Search results
Results from the WOW.Com Content Network
The carbocation intermediate formed in the reaction's rate determining step (RDS) is an sp 2 hybridized carbon with trigonal planar molecular geometry. This allows two different ways for the nucleophilic attack, one on either side of the planar molecule.
Carbocations were also found to be involved in the S N 1 reaction, the E1 reaction, and in rearrangement reactions such as the Whitmore 1,2 shift. The chemical establishment was reluctant to accept the notion of a carbocation and for a long time the Journal of the American Chemical Society refused articles that mentioned them.
Hammond's postulate is useful for understanding the relationship between the rate of a reaction and the stability of the products. While the rate of a reaction depends just on the activation energy (often represented in organic chemistry as ΔG ‡ “delta G double dagger”), the final ratios of products in chemical equilibrium depends only ...
The driving force for this rearrangement step is believed to be the relative stability of the resultant oxonium ion. Although the initial carbocation is already tertiary, the oxygen can stabilize the positive charge much more favorably due to the complete octet configuration at all centers.
In an HX addition reaction, the pi bond of an alkene acts as a nucleophile and bonds with the proton of an HX molecule, where the X is a halogen atom. This forms a carbocation intermediate, and the X then bonds to the positive carbon that is available, as in the following two-step reaction. [4] CH 2 CH 2 + HX → CH 2 CH + 3 + X − CH 2 CH + 3 ...
Hyperconjugation can be used to rationalize a variety of chemical phenomena, including the anomeric effect, the gauche effect, the rotational barrier of ethane, the beta-silicon effect, the vibrational frequency of exocyclic carbonyl groups, and the relative stability of substituted carbocations and substituted carbon centred radicals, and the thermodynamic Zaitsev's rule for alkene stability.
In S N 2, however, the conjugation between the reaction centre and the adjacent pi system stabilizes the transition state. Because they destabilize the positive charge in the carbocation intermediate, electron-withdrawing groups favor the S N 2 reaction.
The Dowd-Beckwith ring expansion reaction is also capable of adding several carbons to a ring at a time, and is a useful tool for making large rings. [11] While it proceeds through an intermediate bicycle the final cyclization and ring opening take place within the same radical reaction . [ 12 ]