enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    For a function of n variables, the number of negative eigenvalues of the Hessian matrix at a critical point is called the index of the critical point. A non-degenerate critical point is a local maximum if and only if the index is n, or, equivalently, if the Hessian matrix is negative definite; it is a local minimum if the index is zero, or ...

  3. Critical point (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point...

    One example is the liquid–vapor critical point, the end point of the pressure–temperature curve that designates conditions under which a liquid and its vapor can coexist. At higher temperatures, the gas comes into a supercritical phase, and so cannot be liquefied by pressure alone.

  4. Hessian matrix - Wikipedia

    en.wikipedia.org/wiki/Hessian_matrix

    Otherwise it is non-degenerate, and called a Morse critical point of . The Hessian matrix plays an important role in Morse theory and catastrophe theory, because its kernel and eigenvalues allow classification of the critical points. [2] [3] [4]

  5. Critical phenomena - Wikipedia

    en.wikipedia.org/wiki/Critical_phenomena

    The critical point is described by a conformal field theory. According to the renormalization group theory, the defining property of criticality is that the characteristic length scale of the structure of the physical system, also known as the correlation length ξ, becomes infinite. This can happen along critical lines in phase space.

  6. Morse theory - Wikipedia

    en.wikipedia.org/wiki/Morse_theory

    A less trivial example of a degenerate critical point is the origin of the monkey saddle. The index of a non-degenerate critical point of is the dimension of the largest subspace of the tangent space to at on which the Hessian is negative definite.

  7. Stationary phase approximation - Wikipedia

    en.wikipedia.org/wiki/Stationary_phase_approximation

    See for example Riemann–Lebesgue lemma. The second statement is that when f is a Morse function, so that the singular points of f are non-degenerate and isolated, then the question can be reduced to the case n = 1. In fact, then, a choice of g can be made to split the integral into cases with just one critical point P in each.

  8. Quantum phase transition - Wikipedia

    en.wikipedia.org/wiki/Quantum_phase_transition

    Diagram of temperature (T) and pressure (p) showing the quantum critical point (QCP) and quantum phase transitions. Talking about quantum phase transitions means talking about transitions at T = 0: by tuning a non-temperature parameter like pressure, chemical composition or magnetic field, one could suppress e.g. some transition temperature like the Curie or Néel temperature to 0 K.

  9. Perturbation theory (quantum mechanics) - Wikipedia

    en.wikipedia.org/wiki/Perturbation_theory...

    The problem of non-perturbative systems has been somewhat alleviated by the advent of modern computers. It has become practical to obtain numerical non-perturbative solutions for certain problems, using methods such as density functional theory. These advances have been of particular benefit to the field of quantum chemistry. [3]