Search results
Results from the WOW.Com Content Network
If a powered aircraft is generating thrust T and experiencing drag D, the difference between the two, T − D, is termed the excess thrust. The instantaneous performance of the aircraft is mostly dependent on the excess thrust. Excess thrust is a vector and is determined as the vector difference between the thrust vector and the drag vector.
Thrust is the force supplied by the engine and depends on the propellant mass flow through the engine. Specific impulse measures the thrust per propellant mass flow. Thrust and specific impulse are related by the design and propellants of the engine in question, but this relationship is tenuous: in most cases, high thrust and high specific ...
Delta-v is typically provided by the thrust of a rocket engine, but can be created by other engines. The time-rate of change of delta-v is the magnitude of the acceleration caused by the engines, i.e., the thrust per total vehicle mass. The actual acceleration vector would be found by adding thrust per mass on to the gravity vector and the ...
The thrust-to-weight ratio is usually calculated from initial gross weight at sea level on earth [6] and is sometimes called thrust-to-Earth-weight ratio. [7] The thrust-to-Earth-weight ratio of a rocket or rocket-propelled vehicle is an indicator of its acceleration expressed in multiples of earth's gravitational acceleration, g 0. [5]
A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...
The term pound of thrust is an alternative name for pound-force in specific contexts. It is frequently seen in US sources on jet engines and rocketry, some of which continue to use the FPS notation. It is frequently seen in US sources on jet engines and rocketry, some of which continue to use the FPS notation.
Constant-thrust and constant-acceleration trajectories both involve a spacecraft firing its engine continuously. In a constant-thrust trajectory, [5] the vehicle's acceleration increases during thrusting period, since the use of fuel decreases the vehicle mass. If, instead of constant thrust, the vehicle has constant acceleration, the engine ...
The inverse of power-to-weight, weight-to-power ratio (power loading) is a calculation commonly applied to aircraft, cars, and vehicles in general, to enable the comparison of one vehicle's performance to another. Power-to-weight ratio is equal to thrust per unit mass multiplied by the velocity of any vehicle.