Search results
Results from the WOW.Com Content Network
The neurovascular unit regulates cerebral blood flow so that activated neurons can be supplied with energy in the right amount and at the right time. [1] Because the brain would quickly suffer damage from any stoppage in blood supply, the cerebral circulatory system has safeguards including autoregulation of the blood vessels.
The cells of the neurovascular unit also make up the blood–brain barrier (BBB), which plays an important role in maintaining the microenvironment of the brain. [11] In addition to regulating the exit and entrance of blood, the blood–brain barrier also filters toxins that may cause inflammation, injury, and disease. [12]
Angiogram of the arterial supply. The cerebral arteries describe three main pairs of arteries and their branches, which perfuse the cerebrum of the brain. The three main arteries are the: Anterior cerebral artery (ACA), which supplies blood to the medial portion of the brain, including the superior parts of the frontal and anterior parietal ...
The blood supply and direction of flow in the hypophyseal portal system has been studied over many years on laboratory animals and human cadaver specimens with injection and vascular corrosion casting methods. Short portal vessels between the neural and anterior pituitary lobes provide an avenue for rapid hormonal exchange.
The posterior cerebral artery (PCA) is one of a pair of cerebral arteries that supply oxygenated blood to the occipital lobe, part of the back of the human brain.The two arteries originate from the distal end of the basilar artery, where it bifurcates into the left and right posterior cerebral arteries.
The brain has a dual blood supply, an anterior and a posterior circulation from arteries at its front and back. The anterior circulation arises from the internal carotid arteries to supply the front of the brain. The posterior circulation arises from the vertebral arteries, to supply the back of the brain and brainstem.
More so than most other organs, the brain is very sensitive to increased or decreased blood flow, and several mechanisms (metabolic, myogenic, and neurogenic) are involved in maintaining an appropriate cerebral blood pressure. Brain blood flow autoregulation is abolished in several disease states such as traumatic brain injury, [2] stroke, [3 ...
A decrease in circulation in the brain vasculature due to stroke or injury can lead to a condition known as ischemia. In general, decrease in blood flow to the brain can be a result of thrombosis causing a partial or full blockage of blood vessels, hypotension in systemic circulation (and consequently the brain), or cardiac arrest. This ...