Ads
related to: higher order markov chain model in marketing plan templateformswift.com has been visited by 100K+ users in the past month
A+ Rating - Better Business Bureau
formstemplates.com has been visited by 100K+ users in the past month
Search results
Results from the WOW.Com Content Network
In the mathematical theory of stochastic processes, variable-order Markov (VOM) models are an important class of models that extend the well known Markov chain models. In contrast to the Markov chain models, where each random variable in a sequence with a Markov property depends on a fixed number of random variables, in VOM models this number of conditioning random variables may vary based on ...
These higher-order chains tend to generate results with a sense of phrasal structure, rather than the 'aimless wandering' produced by a first-order system. [97] Markov chains can be used structurally, as in Xenakis's Analogique A and B. [98] Markov chains are also used in systems which use a Markov model to react interactively to music input. [99]
A Tolerant Markov model (TMM) is a probabilistic-algorithmic Markov chain model. [6] It assigns the probabilities according to a conditioning context that considers the last symbol, from the sequence to occur, as the most probable instead of the true occurring symbol. A TMM can model three different natures: substitutions, additions or deletions.
This category is for articles about the theory of Markov chains and processes, and associated processes. See Category:Markov models for models for specific applications that make use of Markov processes.
Markov chain; Markov chain central limit theorem; Markov chain geostatistics; Markov chain Monte Carlo; Markov partition; Markov property; Markov switching multifractal; Markovian discrimination; Maximum-entropy Markov model; MegaHAL; Models of DNA evolution; MRF optimization via dual decomposition; Multiple sequence alignment
In statistics, Markov chain Monte Carlo (MCMC) is a class of algorithms used to draw samples from a probability distribution. Given a probability distribution, one can construct a Markov chain whose elements' distribution approximates it – that is, the Markov chain's equilibrium distribution matches the target distribution. The more steps ...
Another discrete-time process that may be derived from a continuous-time Markov chain is a δ-skeleton—the (discrete-time) Markov chain formed by observing X(t) at intervals of δ units of time. The random variables X (0), X (δ), X (2δ), ... give the sequence of states visited by the δ-skeleton.
A Markov chain with two states, A and E. In probability, a discrete-time Markov chain (DTMC) is a sequence of random variables, known as a stochastic process, in which the value of the next variable depends only on the value of the current variable, and not any variables in the past.
Ads
related to: higher order markov chain model in marketing plan templateformswift.com has been visited by 100K+ users in the past month
A+ Rating - Better Business Bureau
formstemplates.com has been visited by 100K+ users in the past month