enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance

    Bruker 700 MHz nuclear magnetic resonance (NMR) spectrometer. Nuclear Magnetic Resonance (NMR) basic principles. Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are disturbed by a weak oscillating magnetic field (in the near field [1]) and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic ...

  3. Nuclear magnetic resonance spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    A 900 MHz NMR instrument with a 21.1 T magnet at HWB-NMR, Birmingham, UK Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique based on re-orientation of atomic nuclei with non-zero nuclear spins in an external magnetic field.

  4. Earth's field NMR - Wikipedia

    en.wikipedia.org/wiki/Earth's_field_NMR

    Nuclear magnetic resonance (NMR) in the geomagnetic field is conventionally referred to as Earth's field NMR (EFNMR).EFNMR is a special case of low field NMR.. When a sample is placed in a constant magnetic field and stimulated (perturbed) by a time-varying (e.g., pulsed or alternating) magnetic field, NMR active nuclei resonate at characteristic frequencies.

  5. Relaxation (NMR) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(NMR)

    In magnetic resonance imaging (MRI) and nuclear magnetic resonance spectroscopy (NMR), an observable nuclear spin polarization (magnetization) is created by a homogeneous magnetic field. This field makes the magnetic dipole moments of the sample precess at the resonance frequency of the nuclei. At thermal equilibrium, nuclear spins precess ...

  6. Orders of magnitude (magnetic field) - Wikipedia

    en.wikipedia.org/wiki/Orders_of_magnitude...

    Magnetic induction B (also known as magnetic flux density) has the SI unit tesla [T or Wb/m 2]. [1] One tesla is equal to 10 4 gauss. Magnetic field drops off as the inverse cube of the distance (⁠ 1 / distance 3 ⁠) from a dipole source. Energy required to produce laboratory magnetic fields increases with the square of magnetic field. [2]

  7. Quantum mechanics of nuclear magnetic resonance (NMR ...

    en.wikipedia.org/wiki/Quantum_mechanics_of...

    Nuclear magnetic resonance (NMR) spectroscopy uses the intrinsic magnetic moment that arises from the spin angular momentum of a spin-active nucleus. [1] If the element of interest has a nuclear spin that is not zero, [1] the nucleus may exist in different spin angular momentum states, where the energy of these states can be affected by an external magnetic field.

  8. Larmor precession - Wikipedia

    en.wikipedia.org/wiki/Larmor_precession

    The Larmor frequency is important in NMR spectroscopy. The gyromagnetic ratios, which give the Larmor frequencies at a given magnetic field strength, have been measured and tabulated. [3] Crucially, the Larmor frequency is independent of the polar angle between the applied magnetic field and the magnetic moment direction.

  9. Nucleon magnetic moment - Wikipedia

    en.wikipedia.org/wiki/Nucleon_magnetic_moment

    The gyromagnetic ratio is also the ratio between the observed angular frequency of Larmor precession and the strength of the magnetic field in nuclear magnetic resonance applications, [39] such as in MRI imaging. For this reason, the quantity γ/2π called "gamma bar", expressed in the unit MHz/T, is often given.