enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Ptolemy's inequality - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_inequality

    For four points in order around a circle, Ptolemy's inequality becomes an equality, known as Ptolemy's theorem: ¯ ¯ + ¯ ¯ = ¯ ¯. In the inversion-based proof of Ptolemy's inequality, transforming four co-circular points by an inversion centered at one of them causes the other three to become collinear, so the triangle equality for these three points (from which Ptolemy's inequality may ...

  3. Ptolemaic graph - Wikipedia

    en.wikipedia.org/wiki/Ptolemaic_graph

    In graph theory, a Ptolemaic graph is an undirected graph whose shortest path distances obey Ptolemy's inequality, which in turn was named after the Greek astronomer and mathematician Ptolemy. The Ptolemaic graphs are exactly the graphs that are both chordal and distance-hereditary ; they include the block graphs [ 1 ] and are a subclass of the ...

  4. Casey's theorem - Wikipedia

    en.wikipedia.org/wiki/Casey's_theorem

    In mathematics, Casey's theorem, also known as the generalized Ptolemy's theorem, is a theorem in Euclidean geometry named after the Irish mathematician John Casey. Formulation of the theorem [ edit ]

  5. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    More generally, if the quadrilateral is a rectangle with sides a and b and diagonal d then Ptolemy's theorem reduces to the Pythagorean theorem. In this case the center of the circle coincides with the point of intersection of the diagonals. The product of the diagonals is then d 2, the right hand side of Ptolemy's relation is the sum a 2 + b 2.

  6. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    Euler also generalized Ptolemy's theorem, which is an equality in a cyclic quadrilateral, into an inequality for a convex quadrilateral. It states that + where there is equality if and only if the quadrilateral is cyclic. [24]: p.128–129 This is often called Ptolemy's inequality.

  7. File:Ptolemy Inequality.svg - Wikipedia

    en.wikipedia.org/wiki/File:Ptolemy_Inequality.svg

    The following other wikis use this file: Usage on ar.wikipedia.org متفاوتة بطليموس; Usage on ca.wikipedia.org Teorema de Ptolemeu

  8. List of inequalities - Wikipedia

    en.wikipedia.org/wiki/List_of_inequalities

    Bennett's inequality, an upper bound on the probability that the sum of independent random variables deviates from its expected value by more than any specified amount Bhatia–Davis inequality , an upper bound on the variance of any bounded probability distribution

  9. Theon of Alexandria - Wikipedia

    en.wikipedia.org/wiki/Theon_of_Alexandria

    Ptolemy's Handy Tables. A collection of astronomical tables originally compiled by Ptolemy. [11] It has often been claimed in modern times that Theon edited this text. [12] However, none of the surviving manuscripts mention Theon, [13] and the evidence suggests that the surviving tables must be very similar to the tables Ptolemy provided.