enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Dodecahedron

    In pyritohedral pyrite, the faces have a Miller index of (210), which means that the dihedral angle is 2·arctan(2) ≈ 126.87° and each pentagonal face has one angle of approximately 121.6° in between two angles of approximately 106.6° and opposite two angles of approximately 102.6°. The following formulas show the measurements for the ...

  3. Law of constancy of interfacial angles - Wikipedia

    en.wikipedia.org/wiki/Law_of_constancy_of...

    Dodecahedron built from smaller cubical units. The law of the constancy of interfacial angles was first observed by the Danish physician Nicolas Steno when studying quartz crystals [3] [4] (De solido intra solidum naturaliter contento, Florence, 1669), [5] [6] who noted that, although the crystals differed in appearance from one to another, the angles between corresponding faces were always ...

  4. Table of polyhedron dihedral angles - Wikipedia

    en.wikipedia.org/wiki/Table_of_polyhedron...

    exact dihedral angle (radians) dihedral angle – exact in bold, else approximate (degrees) Platonic solids (regular convex) Tetrahedron {3,3} (3.3.3) arccos (⁠ 1 / 3 ⁠) 70.529° Hexahedron or Cube {4,3} (4.4.4) arccos (0) = ⁠ π / 2 ⁠ 90° Octahedron {3,4} (3.3.3.3) arccos (-⁠ 1 / 3 ⁠) 109.471° Dodecahedron {5,3} (5.5.5) arccos ...

  5. Regular dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_dodecahedron

    A regular dodecahedron or pentagonal dodecahedron [notes 1] is a dodecahedron composed of regular pentagonal faces, three meeting at each vertex. It is an example of Platonic solids, described as cosmic stellation by Plato in his dialogues, and it was used as part of Solar System proposed by Johannes Kepler. However, the regular dodecahedron ...

  6. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive (transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other).

  7. Rhombicosidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombicosidodecahedron

    Two clusters of faces of the bilunabirotunda, the lunes (each lune featuring two triangles adjacent to opposite sides of one square), can be aligned with a congruent patch of faces on the rhombicosidodecahedron. If two bilunabirotundae are aligned this way on opposite sides of the rhombicosidodecahedron, then a cube can be put between the ...

  8. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    The rhombic dodecahedron can be decomposed into six congruent (but non-regular) square dipyramids meeting at a single vertex in the center; these form the images of six pairs of the 24-cell's octahedral cells. The remaining 12 octahedral cells project onto the faces of the rhombic dodecahedron.

  9. Snub dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Snub_dodecahedron

    In geometry, the snub dodecahedron, or snub icosidodecahedron, is an Archimedean solid, one of thirteen convex isogonal nonprismatic solids constructed by two or more types of regular polygon faces. The snub dodecahedron has 92 faces (the most of the 13 Archimedean solids): 12 are pentagons and the other 80 are equilateral triangles. It also ...