Search results
Results from the WOW.Com Content Network
Glutamate is a very major constituent of a wide variety of proteins; consequently it is one of the most abundant amino acids in the human body. [1] Glutamate is formally classified as a non-essential amino acid, because it can be synthesized (in sufficient quantities for health) from α-ketoglutaric acid, which is produced as part of the citric acid cycle by a series of reactions whose ...
Glutamate is the most prominent neurotransmitter in the body, and is the main excitatory neurotransmitter, being present in over 50% of nervous tissue. [2] [3] Glutamate was initially discovered to be a neurotransmitter in insect studies in the early 1960s.
Glutamic acid (symbol Glu or E; [4] the anionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins.It is a non-essential nutrient for humans, meaning that the human body can synthesize enough for its use.
The NMDA receptor is a glutamate and ion channel protein receptor that is activated when glycine and glutamate bind to it. [5] The receptor is a highly complex and dynamic heteromeric protein that interacts with a multitude of intracellular proteins via three distinct subunits, namely GluN1, GluN2, and GluN3.
Excessive glutamate release can overstimulate the brain and lead to excitotoxicity causing cell death resulting in seizures or strokes. [22] Excitotoxicity has been implicated in certain chronic diseases including ischemic stroke , epilepsy , amyotrophic lateral sclerosis , Alzheimer's disease , Huntington disease , and Parkinson's disease .
Glutamate transporters are a family of neurotransmitter transporter proteins that move glutamate – the principal excitatory neurotransmitter – across a membrane.The family of glutamate transporters is composed of two primary subclasses: the excitatory amino acid transporter (EAAT) family and vesicular glutamate transporter (VGLUT) family.
In biochemistry, the glutamate–glutamine cycle is a cyclic metabolic pathway which maintains an adequate supply of the neurotransmitter glutamate in the central nervous system. [1] Neurons are unable to synthesize either the excitatory neurotransmitter glutamate , or the inhibitory GABA from glucose .
When glutamate binds to an ionotropic receptor, the bipolar cell will depolarize (and therefore will hyperpolarize with light as less glutamate is released). On the other hand, binding of glutamate to a metabotropic receptor results in a hyperpolarization, so this bipolar cell will depolarize to light as less glutamate is released.