enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orbital hybridisation - Wikipedia

    en.wikipedia.org/wiki/Orbital_hybridisation

    In chemistry, orbital hybridisation (or hybridization) is the concept of mixing atomic orbitals to form new hybrid orbitals (with different energies, shapes, etc., than the component atomic orbitals) suitable for the pairing of electrons to form chemical bonds in valence bond theory.

  3. Bent's rule - Wikipedia

    en.wikipedia.org/wiki/Bent's_rule

    In chemistry, Bent's rule describes and explains the relationship between the orbital hybridization and the electronegativities of substituents. [1] [2] The rule was stated by Henry A. Bent as follows: [2] Atomic s character concentrates in orbitals directed toward electropositive substituents.

  4. Isovalent hybridization - Wikipedia

    en.wikipedia.org/wiki/Isovalent_hybridization

    In chemistry, isovalent or second order hybridization is an extension of orbital hybridization, the mixing of atomic orbitals into hybrid orbitals which can form chemical bonds, to include fractional numbers of atomic orbitals of each type (s, p, d). It allows for a quantitative depiction of bond formation when the molecular geometry deviates ...

  5. Hybridisation - Wikipedia

    en.wikipedia.org/wiki/Hybridisation

    Hybridization (or hybridisation) may refer to: Hybridization (biology) , the process of combining different varieties of organisms to create a hybrid Orbital hybridization , in chemistry, the mixing of atomic orbitals into new hybrid orbitals

  6. Resonance (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Resonance_(chemistry)

    Contributing structures of the carbonate ion. In chemistry, resonance, also called mesomerism, is a way of describing bonding in certain molecules or polyatomic ions by the combination of several contributing structures (or forms, [1] also variously known as resonance structures or canonical structures) into a resonance hybrid (or hybrid structure) in valence bond theory.

  7. Orbital overlap - Wikipedia

    en.wikipedia.org/wiki/Orbital_overlap

    In chemical bonds, an orbital overlap is the concentration of orbitals on adjacent atoms in the same regions of space. Orbital overlap can lead to bond formation. Linus Pauling explained the importance of orbital overlap in the molecular bond angles observed through experimentation; it is the basis for orbital hybridization.

  8. Valence bond theory - Wikipedia

    en.wikipedia.org/wiki/Valence_bond_theory

    An important aspect of the valence bond theory is the condition of maximum overlap, which leads to the formation of the strongest possible bonds. This theory is used to explain the covalent bond formation in many molecules. sp 3 hybridization in methane forms four equivalent sigma bonds with tetrahedral geometry.

  9. Chemical bonding of water - Wikipedia

    en.wikipedia.org/wiki/Chemical_bonding_of_water

    Isovalent hybridization is used to explain bond angles of those molecules that is inconsistent with the generalized simple sp, sp 2 and sp 3 hybridization. For molecules containing lone pairs, the true hybridization of these molecules depends on the amount of s and p characters of the central atom which is related to its electronegativity.