Search results
Results from the WOW.Com Content Network
In mathematics and logic, the term "uniqueness" refers to the property of being the one and only object satisfying a certain condition. [1] This sort of quantification is known as uniqueness quantification or unique existential quantification, and is often denoted with the symbols "∃!" [2] or "∃ =1". For example, the formal statement
! says “there exists exactly one such that has property .” Only ∀ {\displaystyle \forall } and ∃ {\displaystyle \exists } are part of formal logic. ∃ ! x {\displaystyle \exists !x} P ( x ) {\displaystyle P(x)} is an abbreviation for
If E is a logical predicate, means that there exists at least one value of x for which E is true. 2. Often used in plain text as an abbreviation of "there exists". ∃! Denotes uniqueness quantification, that is, ! means "there exists exactly one x such that P (is true)".
The second is a link to the article that details that symbol, using its Unicode standard name or common alias. (Holding the mouse pointer on the hyperlink will pop up a summary of the symbol's function.); The third gives symbols listed elsewhere in the table that are similar to it in meaning or appearance, or that may be confused with it;
In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier (" ∃x" or "∃(x)" or ...
Hazard symbols; List of mathematical constants (typically letters and compound symbols) Glossary of mathematical symbols; List of physical constants (typically letters and compound symbols) List of common physics notations (typically letters used as variable names in equations) Rod of Asclepius / Caduceus as a symbol of medicine
Put another way, every finite nonstandard real number is "very close" to a unique real number, in the sense that if x is a finite nonstandard real, then there exists one and only one real number st(x) such that x – st(x) is infinitesimal.
There exists an x such that ... For at least one x, .... Keywords for uniqueness quantification include: For exactly one natural number x, ... There is one and only one x such that .... Further, x may be replaced by a pronoun. For example, For every natural number, its product with 2 equals to its sum with itself. Some natural number is prime.