enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uniqueness quantification - Wikipedia

    en.wikipedia.org/wiki/Uniqueness_quantification

    In mathematics and logic, the term "uniqueness" refers to the property of being the one and only object satisfying a certain condition. [1] This sort of quantification is known as uniqueness quantification or unique existential quantification, and is often denoted with the symbols "∃!" [2] or "∃ =1". For example, the formal statement

  3. Glossary of mathematical symbols - Wikipedia

    en.wikipedia.org/wiki/Glossary_of_mathematical...

    If E is a logical predicate, means that there exists at least one value of x for which E is true. 2. Often used in plain text as an abbreviation of "there exists". ∃! Denotes uniqueness quantification, that is, ! means "there exists exactly one x such that P (is true)".

  4. Existential quantification - Wikipedia

    en.wikipedia.org/wiki/Existential_quantification

    In predicate logic, an existential quantification is a type of quantifier, a logical constant which is interpreted as "there exists", "there is at least one", or "for some". It is usually denoted by the logical operator symbol ∃, which, when used together with a predicate variable, is called an existential quantifier (" ∃x" or "∃(x)" or ...

  5. Quantifier (logic) - Wikipedia

    en.wikipedia.org/wiki/Quantifier_(logic)

    There exists an x such that ... For at least one x, .... Keywords for uniqueness quantification include: For exactly one natural number x, ... There is one and only one x such that .... Further, x may be replaced by a pronoun. For example, For every natural number, its product with 2 equals to its sum with itself. Some natural number is prime.

  6. List of logic symbols - Wikipedia

    en.wikipedia.org/wiki/List_of_logic_symbols

    if and only if, iff, xnor propositional logic, Boolean algebra: is true only if both A and B are false, or both A and B are true. Whether a symbol means a material biconditional or a logical equivalence, depends on the author’s style.

  7. First-order logic - Wikipedia

    en.wikipedia.org/wiki/First-order_logic

    In the theory of partial orders with one relation symbol ≤, one could define s = t to be an abbreviation for s ≤ t t ≤ s. In set theory with one relation ∈, one may define s = t to be an abbreviation for ∀x (s ∈ x ↔ t ∈ x) ∀x (x ∈ s ↔ x ∈ t). This definition of equality then automatically satisfies the axioms for equality.

  8. Empty set - Wikipedia

    en.wikipedia.org/wiki/Empty_set

    The only subset of the empty set is the empty set itself; equivalently, the power set of the empty set is the set containing only the empty set. The number of elements of the empty set (i.e., its cardinality) is zero. The empty set is the only set with either of these properties. For any set A: The empty set is a subset of A

  9. Monism - Wikipedia

    en.wikipedia.org/wiki/Monism

    Substance monism posits that only one kind of substance exists, although many things may be made up of this substance, e.g., matter or mind. Dual-aspect monism is the view that the mental and the physical are two aspects of, or perspectives on, the same substance.