Search results
Results from the WOW.Com Content Network
In statistics, nonlinear regression is a form of regression analysis in which observational data are modeled by a function which is a nonlinear combination of the model parameters and depends on one or more independent variables. The data are fitted by a method of successive approximations (iterations).
Fractional programming — objective is ratio of nonlinear functions, constraints are linear; Nonlinear complementarity problem (NCP) — find x such that x ≥ 0, f(x) ≥ 0 and x T f(x) = 0; Least squares — the objective function is a sum of squares Non-linear least squares; Gauss–Newton algorithm. BHHH algorithm — variant of Gauss ...
Non-linear least squares is the form of least squares analysis used to fit a set of m observations with a model that is non-linear in n unknown parameters (m ≥ n). It is used in some forms of nonlinear regression. The basis of the method is to approximate the model by a linear one and to refine the parameters by successive iterations.
Nonparametric regression is a category of regression analysis in which the predictor does not take a predetermined form but is constructed according to information derived from the data.
IRLS can be used for ℓ 1 minimization and smoothed ℓ p minimization, p < 1, in compressed sensing problems. It has been proved that the algorithm has a linear rate of convergence for ℓ 1 norm and superlinear for ℓ t with t < 1, under the restricted isometry property, which is generally a sufficient condition for sparse solutions.
Whereas linear conjugate gradient seeks a solution to the linear equation =, the nonlinear conjugate gradient method is generally used to find the local minimum of a nonlinear function using its gradient alone. It works when the function is approximately quadratic near the minimum, which is the case when the function is twice differentiable at ...
If there are other non-linear effects that have a correlation to the independent variable (such as cyclic influences), the use of least-squares estimation of the trend is not valid. Also, where the variations are significantly larger than the resulting straight line trend, the choice of start and end points can significantly change the result.
In time series modeling, a nonlinear autoregressive exogenous model (NARX) is a nonlinear autoregressive model which has exogenous inputs. This means that the model relates the current value of a time series to both: past values of the same series; and