Search results
Results from the WOW.Com Content Network
Let D be a linear differential operator on the space C ∞ of infinitely differentiable real functions of a real argument t. The eigenvalue equation for D is the differential equation = The functions that satisfy this equation are eigenvectors of D and are commonly called eigenfunctions.
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
For example, if has real-valued elements, then it may be necessary for the eigenvalues and the components of the eigenvectors to have complex values. [ 35 ] [ 36 ] [ 37 ] The set spanned by all generalized eigenvectors for a given λ {\displaystyle \lambda } forms the generalized eigenspace for λ {\displaystyle \lambda } .
Let be the vector space spanned by the eigenvectors of which correspond to a negative eigenvalue and analogously for the positive eigenvalues. If a ∈ W s {\displaystyle a\in W^{s}} then lim t → ∞ x ( t ) = 0 {\displaystyle {\mbox{lim}}_{t\rightarrow \infty }x(t)=0} ; that is, the equilibrium point 0 is attractive to x ( t ) {\displaystyle ...
Let an eigenvalue equation be solved by linearly expanding the unknown function in terms of N known functions. Let the resulting eigenvalues be ordered from the smallest (lowest), λ 1, to the largest (highest), λ N. Let the same eigenvalue equation be solved using a basis set of dimension N + 1 that comprises the previous N functions plus an ...
The generator, or lead vector, p b of the chain is a generalized eigenvector such that (A − λI) b p b = 0. The vector p 1 = (A − λI) b−1 p b is an ordinary eigenvector corresponding to λ. In general, p i is a preimage of p i−1 under A − λI. So the lead vector generates the chain via multiplication by A − λI.
As stated in the introduction, for any vector x, one has (,) [,], where , are respectively the smallest and largest eigenvalues of .This is immediate after observing that the Rayleigh quotient is a weighted average of eigenvalues of M: (,) = = = = where (,) is the -th eigenpair after orthonormalization and = is the th coordinate of x in the eigenbasis.
In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method.Arnoldi finds an approximation to the eigenvalues and eigenvectors of general (possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices.