Search results
Results from the WOW.Com Content Network
In summary, a set of the real numbers is an interval, if and only if it is an open interval, a closed interval, or a half-open interval. [ 4 ] [ 5 ] A degenerate interval is any set consisting of a single real number (i.e., an interval of the form [ a , a ] ). [ 6 ]
The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.
4. Standard notation for an equivalence relation. 5. In probability and statistics, may specify the probability distribution of a random variable. For example, (,) means that the distribution of the random variable X is standard normal. [2] 6. Notation for proportionality.
An interval in a poset P is a subset that can be defined with interval notation: For a ≤ b, the closed interval [a, b] is the set of elements x satisfying a ≤ x ≤ b (that is, a ≤ x and x ≤ b). It contains at least the elements a and b.
4 members of a sequence of nested intervals. In mathematics, a sequence of nested intervals can be intuitively understood as an ordered collection of intervals on the real number line with natural numbers =,,, … as an index.
Given real numbers x and y, integers m and n and the set of integers, floor and ceiling may be defined by the equations ⌊ ⌋ = {}, ⌈ ⌉ = {}. Since there is exactly one integer in a half-open interval of length one, for any real number x, there are unique integers m and n satisfying the equation
A partition of an interval being used in a Riemann sum. The partition itself is shown in grey at the bottom, with the norm of the partition indicated in red. In mathematics, a partition of an interval [a, b] on the real line is a finite sequence x 0, x 1, x 2, …, x n of real numbers such that a = x 0 < x 1 < x 2 < … < x n = b.
In mathematics, especially order theory, the interval order for a collection of intervals on the real line is the partial order corresponding to their left-to-right precedence relation—one interval, I 1, being considered less than another, I 2, if I 1 is completely to the left of I 2.