enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Estimation theory - Wikipedia

    en.wikipedia.org/wiki/Estimation_theory

    Estimation theory is a branch of statistics that deals with estimating the values of parameters based on measured empirical data that has a random component. The parameters describe an underlying physical setting in such a way that their value affects the distribution of the measured data.

  3. Estimating equations - Wikipedia

    en.wikipedia.org/wiki/Estimating_equations

    In statistics, the method of estimating equations is a way of specifying how the parameters of a statistical model should be estimated. This can be thought of as a generalisation of many classical methods—the method of moments , least squares , and maximum likelihood —as well as some recent methods like M-estimators .

  4. Minimum-variance unbiased estimator - Wikipedia

    en.wikipedia.org/wiki/Minimum-variance_unbiased...

    However, the sample standard deviation is not unbiased for the population standard deviation – see unbiased estimation of standard deviation. Further, for other distributions the sample mean and sample variance are not in general MVUEs – for a uniform distribution with unknown upper and lower bounds, the mid-range is the MVUE for the ...

  5. Kalman filter - Wikipedia

    en.wikipedia.org/wiki/Kalman_filter

    Field Kalman Filter (FKF), a Bayesian algorithm, which allows simultaneous estimation of the state, parameters and noise covariance has been proposed. [36] The FKF algorithm has a recursive formulation, good observed convergence, and relatively low complexity, thus suggesting that the FKF algorithm may possibly be a worthwhile alternative to ...

  6. Ordinary least squares - Wikipedia

    en.wikipedia.org/wiki/Ordinary_least_squares

    In statistics, ordinary least squares (OLS) is a type of linear least squares method for choosing the unknown parameters in a linear regression model (with fixed level-one [clarification needed] effects of a linear function of a set of explanatory variables) by the principle of least squares: minimizing the sum of the squares of the differences between the observed dependent variable (values ...

  7. Method of moments (statistics) - Wikipedia

    en.wikipedia.org/wiki/Method_of_moments_(statistics)

    In statistics, the method of moments is a method of estimation of population parameters.The same principle is used to derive higher moments like skewness and kurtosis. It starts by expressing the population moments (i.e., the expected values of powers of the random variable under consideration) as functions of the parameters of interest.

  8. Minimax estimator - Wikipedia

    en.wikipedia.org/wiki/Minimax_estimator

    An example is shown on the left. The parameter space has just two elements and each point on the graph corresponds to the risk of a decision rule: the x-coordinate is the risk when the parameter is and the y-coordinate is the risk when the parameter is . In this decision problem, the minimax estimator lies on a line segment connecting two ...

  9. Estimator - Wikipedia

    en.wikipedia.org/wiki/Estimator

    A common way of phrasing it is "the estimator is the method selected to obtain an estimate of an unknown parameter". The parameter being estimated is sometimes called the estimand. It can be either finite-dimensional (in parametric and semi-parametric models), or infinite-dimensional (semi-parametric and non-parametric models). [2]