Search results
Results from the WOW.Com Content Network
Low initiator efficiency, ƒ, is largely attributed to the cage effect. The rate of initiation is described as: = [] [6] where R i is the rate of initiation, k d is the rate constant for initiator dissociation, [I] is the initial concentration of initiator. Initiator efficiency represents the fraction of primary radicals R·, that actually ...
Chemical decomposition, or chemical breakdown, is the process or effect of simplifying a single chemical entity (normal molecule, reaction intermediate, etc.) into two or more fragments. [1] Chemical decomposition is usually regarded and defined as the exact opposite of chemical synthesis. In short, the chemical reaction in which two or more ...
The rate of decomposition is governed by three sets of factors: the physical environment (temperature, moisture and soil properties), the quantity and quality of the dead material available to decomposers, and the nature of the microbial community itself. [64] Decomposition rates are low under very wet or very dry conditions.
When the C:N ratio is less than circa 25:1, further decomposition causes mineralization by the simultaneous release of inorganic nitrogen as ammonium. When the decomposition of organic matter is complete, the mineralized nitrogen therefrom adds to that already present in the soil and therefore increases the total mineral nitrogen in the soil.
Bioreactor landfills accelerate the process of decomposition. [13] As decomposition progresses, the mass of biodegradable components in the landfill declines, creating more space for dumping garbage. Bioreactor landfills are expected to increase this rate of decomposition and save up to 30% of space needed for landfills.
A self-accelerating decomposition occurs when the rate of peroxide decomposition is sufficient to generate heat at a faster rate than it can be dissipated to the environment. Temperature is the main factor in determining the decomposition rate, although the size of the package is also important since its dimensions will determine the ability to ...
In chemistry, the rate equation (also known as the rate law or empirical differential rate equation) is an empirical differential mathematical expression for the reaction rate of a given reaction in terms of concentrations of chemical species and constant parameters (normally rate coefficients and partial orders of reaction) only. [1]
The vessel and its contents are then exposed to microwave irradiation, raising the pressure and temperature of the solution mixture. The elevated pressures and temperatures within a low pH sample medium increase both the speed of thermal decomposition of the sample and the solubility of elements in solution.