Search results
Results from the WOW.Com Content Network
The attenuation coefficient of a volume, denoted μ, is defined as [6] =, where Φ e is the radiant flux;; z is the path length of the beam.; Note that for an attenuation coefficient which does not vary with z, this equation is solved along a line from =0 to as:
In chemistry, the molar absorption coefficient or molar attenuation coefficient (ε) [1] is a measurement of how strongly a chemical species absorbs, and thereby attenuates, light at a given wavelength. It is an intrinsic property of the species.
In chemistry, mass attenuation coefficients are often used for a chemical species dissolved in a solution.In that case, the mass attenuation coefficient is defined by the same equation, except that the "density" is the density of only that one chemical species, and the "attenuation" is the attenuation due to only that one chemical species.
absorption coefficient is essentially (but not quite always) synonymous with attenuation coefficient; see attenuation coefficient for details; molar absorption coefficient or molar extinction coefficient , also called molar absorptivity , is the attenuation coefficient divided by molarity (and usually multiplied by ln(10), i.e., decadic); see ...
In those situations, the most general form of the Beer–Lambert law states that the total attenuation can be obtained by integrating the attenuation coefficient over small slices dz of the beamline: = = (), = = (). These formulations then reduce to the simpler versions when there is only one active species and the attenuation coefficients are ...
In engineering, attenuation is usually measured in units of decibels per unit length of medium (dB/cm, dB/km, etc.) and is represented by the attenuation coefficient of the medium in question. [1] Attenuation also occurs in earthquakes; when the seismic waves move farther away from the hypocenter, they grow smaller as they are attenuated by the ...
where μ is the linear attenuation coefficient, μ/ρ is the mass attenuation coefficient and ρ is the density of the material. The mass attenuation coefficient can be looked up or calculated for any material and energy combination using the National Institute of Standards and Technology (NIST) databases. [7] [8]
ε i is the molar attenuation coefficient of the attenuating species i in the material sample; c i is the amount concentration of the attenuating species i in the material sample; ℓ is the path length of the beam of light through the material sample. Attenuation cross section and molar attenuation coefficient are related by