Search results
Results from the WOW.Com Content Network
This identity is derived from the divergence theorem applied to the vector field F = ψ ∇φ while using an extension of the product rule that ∇ ⋅ (ψ X) = ∇ψ ⋅X + ψ ∇⋅X: Let φ and ψ be scalar functions defined on some region U ⊂ R d, and suppose that φ is twice continuously differentiable, and ψ is once continuously differentiable.
A special case of this is =, in which case the theorem is the basis for Green's identities. With F → F × G {\displaystyle \mathbf {F} \rightarrow \mathbf {F} \times \mathbf {G} } for two vector fields F and G , where × {\displaystyle \times } denotes a cross product,
If D is a simple type of region with its boundary consisting of the curves C 1, C 2, C 3, C 4, half of Green's theorem can be demonstrated. The following is a proof of half of the theorem for the simplified area D, a type I region where C 1 and C 3 are curves connected by vertical lines
The six trigonometric functions are defined for every real number, except, for some of them, for angles that differ from 0 by a multiple of the right angle (90°). Referring to the diagram at the right, the six trigonometric functions of θ are, for angles smaller than the right angle:
Using the Green's function for the three-variable Laplace operator, one can integrate the Poisson equation in order to determine the potential function. Green's functions can be expanded in terms of the basis elements (harmonic functions) which are determined using the separable coordinate systems for the linear partial differential equation ...
The card was decorated with the three green arrows that make up the recycling symbol. Westerveld saw irony in the "save the towel" movement, because hotels waste resources in many different ways ...
For faith leaders, the line historically has been short enough to get a green card before their temporary work visas expired, attorneys say. That changed in March.
These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.