Search results
Results from the WOW.Com Content Network
Typically aqueous sodium hydroxide solutions are used. [1] [2] It is an important type of alkaline hydrolysis. When the carboxylate is long chain, its salt is called a soap. The saponification of ethyl acetate gives sodium acetate and ethanol: C 2 H 5 O 2 CCH 3 + NaOH → C 2 H 5 OH + NaO 2 CCH 3
A sodium hydroxide soak solution is used as a powerful degreaser on stainless steel and glass bakeware. It is also a common ingredient in oven cleaners. A common use of sodium hydroxide is in the production of parts washer detergents. Parts washer detergents based on sodium hydroxide are some of the most aggressive parts washer cleaning chemicals.
The first type, shown on the right and left of the diagram, uses an electrolyte of sodium chloride solution, a graphite anode (A), and a mercury cathode (M). The other type of cell, shown in the center of the diagram, uses an electrolyte of sodium hydroxide solution, a mercury anode (M), and an iron cathode (D). The mercury electrode is common ...
The process has a high energy consumption, for example around 2,500 kWh (9,000 MJ) of electricity per tonne of sodium hydroxide produced. Because the process yields equivalent amounts of chlorine and sodium hydroxide (two moles of sodium hydroxide per mole of chlorine), it is necessary to find a use for these products in the same proportion ...
[10] [11] Sodium hydroxide is frequently used in the process of decomposing roadkill dumped in landfills by animal disposal contractors. [8] Due to its low cost and easy availability, it has also been used to dispose of corpses by criminals. Italian serial killer Leonarda Cianciulli used this chemical to turn dead bodies into soap. [12]
Alkaline water electrolysis is a type of electrolysis that is characterized by having two electrodes operating in a liquid alkaline electrolyte. Commonly, a solution of potassium hydroxide (KOH) or sodium hydroxide (NaOH) at 25-40 wt% is used. [6]
Chlorine can be manufactured by the electrolysis of a sodium chloride solution , which is known as the Chloralkali process. The production of chlorine results in the co-products caustic soda (sodium hydroxide, NaOH) and hydrogen gas (H 2). These two products, as well as chlorine itself, are highly reactive.
This can be calculated for dilute solutions using the Debye–Hückel equation; for more concentrated solutions other approximations must be used. In most cases, the analyst's goal is simply to make sure that the activity coefficient is constant across a set of solutions, with the assumption that no significant ion pairing exists in the solutions.