Search results
Results from the WOW.Com Content Network
The sublimation that occurs at the solid-gas boundary (critical sublimation point) (corresponding to boiling in vaporization) may be called rapid sublimation, and the substance sublimes rapidly. The words "gradual" and "rapid" have acquired special meanings in this context and no longer describe the rate of sublimation. [citation needed]
A typical phase diagram.The solid green line applies to most substances; the dashed green line gives the anomalous behavior of water. In thermodynamics, the triple point of a substance is the temperature and pressure at which the three phases (gas, liquid, and solid) of that substance coexist in thermodynamic equilibrium. [1]
Water vapor, water vapour or aqueous vapor is the gaseous phase of water. It is one state of water within the hydrosphere. Water vapor can be produced from the evaporation or boiling of liquid water or from the sublimation of ice. Water vapor is transparent, like most constituents of the atmosphere. [1]
Latent heat can be understood as hidden energy which is supplied or extracted to change the state of a substance without changing its temperature or pressure. This includes the latent heat of fusion (solid to liquid), the latent heat of vaporization (liquid to gas) and the latent heat of sublimation (solid to gas). [1] [2]
A similar concept applies to liquid–gas phase changes. [7] Water is an exception which has a solid-liquid boundary with negative slope so that the melting point decreases with pressure. This occurs because ice (solid water) is less dense than liquid water, as shown by the fact that ice floats on water.
The transition from solid to liquid, and gas to liquid (shown by the white condensed water vapour). Other phase changes include: Transition to a mesophase between solid and liquid, such as one of the "liquid crystal" phases. The dependence of the adsorption geometry on coverage and temperature, such as for hydrogen on iron (110).
The commonly known phases solid, liquid and vapor are separated by phase boundaries, i.e. pressure–temperature combinations where two phases can coexist. At the triple point, all three phases can coexist. However, the liquid–vapor boundary terminates in an endpoint at some critical temperature T c and critical pressure p c. This is the ...
At pressures below 5.13 atm and temperatures below −56.4 °C (216.8 K; −69.5 °F) (the triple point), CO 2 changes from a solid to a gas with no intervening liquid form, through a process called sublimation. [a] The opposite process is called deposition, where CO 2 changes from the gas to solid phase (dry ice). At atmospheric pressure ...