enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regular icosahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_icosahedron

    An icosahedron can be inscribed in a dodecahedron by placing its vertices at the face centers of the dodecahedron, and vice versa. [17] An icosahedron can be inscribed in an octahedron by placing its 12 vertices on the 12 edges of the octahedron such that they divide each edge into its two golden sections. Because the golden sections are ...

  3. Icosahedron - Wikipedia

    en.wikipedia.org/wiki/Icosahedron

    Construction from the vertices of a truncated octahedron, showing internal rectangles. The Cartesian coordinates of the 12 vertices can be defined by the vectors defined by all the possible cyclic permutations and sign-flips of coordinates of the form (2, 1, 0). These coordinates represent the truncated octahedron with alternated vertices deleted.

  4. Final stellation of the icosahedron - Wikipedia

    en.wikipedia.org/wiki/Final_stellation_of_the...

    The 92 vertices lie on the surfaces of three concentric spheres. The innermost group of 20 vertices form the vertices of a regular dodecahedron; the next layer of 12 form the vertices of a regular icosahedron; and the outer layer of 60 form the vertices of a nonuniform truncated icosahedron. The radii of these spheres are in the ratio [11]

  5. Truncated icosidodecahedron - Wikipedia

    en.wikipedia.org/wiki/Truncated_icosidodecahedron

    The truncated icosidodecahedron is the convex hull of a rhombicosidodecahedron with cuboids above its 30 squares, whose height to base ratio is φ. The rest of its space can be dissected into nonuniform cupolas, namely 12 between inner pentagons and outer decagons and 20 between inner triangles and outer hexagons .

  6. De quinque corporibus regularibus - Wikipedia

    en.wikipedia.org/wiki/De_quinque_corporibus...

    Truncated icosahedron, one of the Archimedean solids illustrated in De quinque corporibus regularibus. The five Platonic solids (the regular tetrahedron, cube, octahedron, dodecahedron, and icosahedron) were known to della Francesca through two classical sources: Timaeus, in which Plato theorizes that four of them correspond to the classical elements making up the world (with the fifth, the ...

  7. Rhombic triacontahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_triacontahedron

    Let φ be the golden ratio.The 12 points given by (0, ±1, ±φ) and cyclic permutations of these coordinates are the vertices of a regular icosahedron.Its dual regular dodecahedron, whose edges intersect those of the icosahedron at right angles, has as vertices the 8 points (±1, ±1, ±1) together with the 12 points (0, ±φ, ± ⁠ 1 / φ ⁠) and cyclic permutations of these coordinates.

  8. Jessen's icosahedron - Wikipedia

    en.wikipedia.org/wiki/Jessen's_icosahedron

    The vertices of Jessen's icosahedron may be chosen to have as their coordinates the twelve triplets given by the cyclic permutations of the coordinates (,,). [1] With this coordinate representation, the short edges of the icosahedron (the ones with convex angles) have length 6 {\displaystyle {\sqrt {6}}} , and the long (reflex) edges have ...

  9. Regular dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_dodecahedron

    The regular icosahedron can be constructed by intersecting three golden rectangles perpendicularly, arranged in two-by-two orthogonal, and connecting each of the golden rectangle's vertices with a segment line. There are 12 regular icosahedron vertices, considered as the center of 12 regular dodecahedron faces. [13]