Search results
Results from the WOW.Com Content Network
An output of pip install virtualenv. Pip's command-line interface allows the install of Python software packages by issuing a command: pip install some-package-name. Users can also remove the package by issuing a command: pip uninstall some-package-name. pip has a feature to manage full lists of packages and corresponding version numbers ...
In computing, CUDA is a proprietary [1] parallel computing platform and application programming interface (API) that allows software to use certain types of graphics processing units (GPUs) for accelerated general-purpose processing, an approach called general-purpose computing on GPUs.
Built on top of OpenCV, a widely used computer vision library, Albumentations provides high-performance implementations of various image processing functions. It also offers a rich set of image transformation functions and a simple API for combining them, allowing users to create custom augmentation pipelines tailored to their specific needs.
The first alpha version of OpenCV was released to the public at the IEEE Conference on Computer Vision and Pattern Recognition in 2000, and five betas were released between 2001 and 2005. The first 1.0 version was released in 2006. A version 1.1 "pre-release" was released in October 2008. The second major release of the OpenCV was in October 2009.
While the reference implementation runs on single devices, TensorFlow can run on multiple CPUs and GPUs (with optional CUDA and SYCL extensions for general-purpose computing on graphics processing units). [18] TensorFlow is available on 64-bit Linux, macOS, Windows, and mobile computing platforms including Android and iOS. [citation needed]
CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3]
Numba is an open-source JIT compiler that translates a subset of Python and NumPy into fast machine code using LLVM, via the llvmlite Python package.It offers a range of options for parallelising Python code for CPUs and GPUs, often with only minor code changes.
CUDA code runs on both the central processing unit (CPU) and graphics processing unit (GPU). NVCC separates these two parts and sends host code (the part of code which will be run on the CPU) to a C compiler like GNU Compiler Collection (GCC) or Intel C++ Compiler (ICC) or Microsoft Visual C++ Compiler, and sends the device code (the part which will run on the GPU) to the GPU.