enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Platonic solid - Wikipedia

    en.wikipedia.org/wiki/Platonic_solid

    The Platonic solids have been known since antiquity. It has been suggested that certain carved stone balls created by the late Neolithic people of Scotland represent these shapes; however, these balls have rounded knobs rather than being polyhedral, the numbers of knobs frequently differed from the numbers of vertices of the Platonic solids, there is no ball whose knobs match the 20 vertices ...

  3. List of uniform polyhedra - Wikipedia

    en.wikipedia.org/wiki/List_of_uniform_polyhedra

    The 5 Platonic solids are called a tetrahedron, hexahedron, octahedron, dodecahedron and icosahedron with 4, 6, 8, 12, and 20 sides respectively. The regular hexahedron is a cube . Table of polyhedra

  4. Regular 4-polytope - Wikipedia

    en.wikipedia.org/wiki/Regular_4-polytope

    Each convex regular 4-polytope is bounded by a set of 3-dimensional cells which are all Platonic solids of the same type and size. These are fitted together along their respective faces (face-to-face) in a regular fashion, forming the surface of the 4-polytope which is a closed, curved 3-dimensional space (analogous to the way the surface of ...

  5. List of regular polytopes - Wikipedia

    en.wikipedia.org/wiki/List_of_regular_polytopes

    The five convex regular polyhedra are called the Platonic solids. The vertex figure is given with each vertex count. All these polyhedra have an Euler characteristic (χ) of 2.

  6. Regular polyhedron - Wikipedia

    en.wikipedia.org/wiki/Regular_polyhedron

    The five Platonic solids have an Euler characteristic of 2. This simply reflects that the surface is a topological 2-sphere, and so is also true, for example, of any polyhedron which is star-shaped with respect to some interior point.

  7. Icosahedron - Wikipedia

    en.wikipedia.org/wiki/Icosahedron

    The convex regular icosahedron is usually referred to simply as the regular icosahedron, one of the five regular Platonic solids, and is represented by its Schläfli symbol {3, 5}, containing 20 triangular faces, with 5 faces meeting around each vertex.

  8. Category:Platonic solids - Wikipedia

    en.wikipedia.org/wiki/Category:Platonic_solids

    Pages in category "Platonic solids" The following 10 pages are in this category, out of 10 total. This list may not reflect recent changes. ...

  9. De quinque corporibus regularibus - Wikipedia

    en.wikipedia.org/wiki/De_quinque_corporibus...

    Truncated icosahedron, one of the Archimedean solids illustrated in De quinque corporibus regularibus. The five Platonic solids (the regular tetrahedron, cube, octahedron, dodecahedron, and icosahedron) were known to della Francesca through two classical sources: Timaeus, in which Plato theorizes that four of them correspond to the classical elements making up the world (with the fifth, the ...