Search results
Results from the WOW.Com Content Network
Examples of class II viral fusion proteins include the dengue virus E protein, and the west nile virus E protein. [5] [6] Class III: Structural conformation is a combination of features from Class I and Class II viral membrane fusion proteins. An example of a Class III viral fusion protein is the rabies virus glycoprotein, G. [6]
Life-cycle of a typical virus (left to right); following infection of a cell by a single virus, hundreds of offspring are released. When a virus infects a cell, the virus forces it to make thousands more viruses. It does this by making the cell copy the virus's DNA or RNA, making viral proteins, which all assemble to form new virus particles. [37]
The universal structure of antibody includes the constant regions part of the fragment crystallizable(Fc) region of the antibody (shown in dark blue). It also includes the fragment antigen binding which is composed of one heavy and one light chain (shown as L for light and H for heavy).
Each antibody binds to a specific antigen in a highly specific interaction analogous to a lock and key.. An antibody (Ab) or immunoglobulin (Ig) is a large, Y-shaped protein belonging to the immunoglobulin superfamily which is used by the immune system to identify and neutralize antigens such as bacteria and viruses, including those that cause disease.
Thus these regions may be part of a paratope, the part of an antibody that recognizes and binds to an antigen. The rest of the V region between the hypervariable regions are called framework regions. Each V domain has four framework domains, namely FR1, FR2, FR3, and FR4. [4] [6] Structure of hen egg lysozyme (HEL) antigen.
The prolate structure of a typical head on a bacteriophage. An elongated icosahedron is a common shape for the heads of bacteriophages. Such a structure is composed of a cylinder with a cap at either end. The cylinder is composed of 10 elongated triangular faces.
Hydrogen bond interactions will induce the enzymatic activity of an enzyme; therefore, the more hydrogen bonds that are present at the antibody-antigen binding site will result in a stronger, more stable binding structure. [1] The tertiary structure of an antibody is important to analyze and design new antibodies. The structure and sequence of ...
An illustration that shows how antigens induce the immune system response by interacting with an antibody that matches the molecular structure of an antigen. In immunology, an antigen (Ag) is a molecule, moiety, foreign particulate matter, or an allergen, such as pollen, that can bind to a specific antibody or T-cell receptor. [1]