Search results
Results from the WOW.Com Content Network
The partial sum formed by the first n + 1 terms of a Taylor series is a polynomial of degree n that is called the n th Taylor polynomial of the function. Taylor polynomials are approximations of a function, which become generally more accurate as n increases.
In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function , the Taylor polynomial is the truncation at the order k {\textstyle k} of the Taylor series of the function.
The sine function and all of its Taylor polynomials are odd functions. The cosine function and all of its Taylor polynomials are even functions. In mathematics , an even function is a real function such that f ( − x ) = f ( x ) {\displaystyle f(-x)=f(x)} for every x {\displaystyle x} in its domain .
Every Laurent polynomial can be written as a rational function while the converse is not necessarily true, i.e., the ring of Laurent polynomials is a subring of the rational functions. The rational function f ( x ) = x x {\displaystyle f(x)={\tfrac {x}{x}}} is equal to 1 for all x except 0, where there is a removable singularity .
Typical examples of analytic functions are The following elementary functions: All polynomials: if a polynomial has degree n, any terms of degree larger than n in its Taylor series expansion must immediately vanish to 0, and so this series will be trivially convergent. Furthermore, every polynomial is its own Maclaurin series.
If f is a polynomial of degree less than or equal to d, then the Taylor polynomial of degree d equals f. The limit of the Taylor polynomials is an infinite series called the Taylor series. The Taylor series is frequently a very good approximation to the original function. Functions which are equal to their Taylor series are called analytic ...
Given a twice continuously differentiable function of one real variable, Taylor's theorem for the case = states that = + ′ () + where is the remainder term. The linear approximation is obtained by dropping the remainder: f ( x ) ≈ f ( a ) + f ′ ( a ) ( x − a ) . {\displaystyle f(x)\approx f(a)+f'(a)(x-a).}
For example, if a quantity is constant within the whole interval, approximating it with a second-order Taylor series will not increase the accuracy. In the case of a smooth function , the n th-order approximation is a polynomial of degree n , which is obtained by truncating the Taylor series to this degree.