Search results
Results from the WOW.Com Content Network
A set of rules can be used to infer any valid conclusion if it is complete, while never inferring an invalid conclusion, if it is sound. A sound and complete set of rules need not include every rule in the following list, as many of the rules are redundant, and can be proven with the other rules.
In propositional logic, conjunction elimination (also called and elimination, ∧ elimination, [1] or simplification) [2] [3] [4] is a valid immediate inference, argument form and rule of inference which makes the inference that, if the conjunction A and B is true, then A is true, and B is true.
In logic, a rule of replacement [1] [2] [3] is a transformation rule that may be applied to only a particular segment of an expression. A logical system may be constructed so that it uses either axioms, rules of inference, or both as transformation rules for logical expressions in the system. Whereas a rule of inference is always applied to a ...
De Morgan's laws represented with Venn diagrams.In each case, the resultant set is the set of all points in any shade of blue. In propositional logic and Boolean algebra, De Morgan's laws, [1] [2] [3] also known as De Morgan's theorem, [4] are a pair of transformation rules that are both valid rules of inference.
A Short Course in Discrete Mathematics. Mineola, NY: Dover Publications, Inc. ISBN 0-486-43946-1 . The authors demonstrate a proof that any Boolean (logic) function can be expressed in either disjunctive or conjunctive normal form (cf pages 5–6); the proof simply proceeds by creating all 2 N rows of N Boolean variables and demonstrates that ...
In propositional logic, material implication [1] [2] is a valid rule of replacement that allows a conditional statement to be replaced by a disjunction in which the antecedent is negated. The rule states that P implies Q is logically equivalent to not- P {\displaystyle P} or Q {\displaystyle Q} and that either form can replace the other in ...
In classical logic, disjunctive syllogism [1] [2] (historically known as modus tollendo ponens (MTP), [3] Latin for "mode that affirms by denying") [4] is a valid argument form which is a syllogism having a disjunctive statement for one of its premises.
The second simplification is that the lambda calculus only uses functions of a single input. An ordinary function that requires two inputs, for instance the s q u a r e _ s u m {\textstyle \operatorname {square\_sum} } function, can be reworked into an equivalent function that accepts a single input, and as output returns another function, that ...