Search results
Results from the WOW.Com Content Network
A finite-state machine can be used as a representation of a Markov chain. Assuming a sequence of independent and identically distributed input signals (for example, symbols from a binary alphabet chosen by coin tosses), if the machine is in state y at time n , then the probability that it moves to state x at time n + 1 depends only on the ...
Markov chain models have been used in advanced baseball analysis since 1960, although their use is still rare. Each half-inning of a baseball game fits the Markov chain state when the number of runners and outs are considered. During any at-bat, there are 24 possible combinations of number of outs and position of the runners.
A basic property about an absorbing Markov chain is the expected number of visits to a transient state j starting from a transient state i (before being absorbed). This can be established to be given by the (i, j) entry of so-called fundamental matrix N, obtained by summing Q k for all k (from 0 to ∞).
A continuous-time Markov chain (CTMC) is a continuous stochastic process in which, for each state, the process will change state according to an exponential random variable and then move to a different state as specified by the probabilities of a stochastic matrix. An equivalent formulation describes the process as changing state according to ...
A terminating Markov chain is a Markov chain where all states are transient, except one which is absorbing. Reordering the states, the transition probability matrix of a terminating Markov chain with m {\displaystyle m} transient states is
In this context, the Markov property indicates that the distribution for this variable depends only on the distribution of a previous state. An example use of a Markov chain is Markov chain Monte Carlo, which uses the Markov property to prove that a particular method for performing a random walk will sample from the joint distribution.
A Markov chain with two states, A and E. In probability, a discrete-time Markov chain (DTMC) is a sequence of random variables, known as a stochastic process, in which the value of the next variable depends only on the value of the current variable, and not any variables in the past.
The "Markov" in "Markov decision process" refers to the underlying structure of state transitions that still follow the Markov property. The process is called a "decision process" because it involves making decisions that influence these state transitions, extending the concept of a Markov chain into the realm of decision-making under uncertainty.