Search results
Results from the WOW.Com Content Network
Jitter period is the interval between two times of maximum effect (or minimum effect) of a signal characteristic that varies regularly with time. Jitter frequency, the more commonly quoted figure, is its inverse. ITU-T G.810 classifies deviation lower frequencies below 10 Hz as wander and higher frequencies at or above 10 Hz as jitter. [2]
In signal processing, phase noise is the frequency-domain representation of random fluctuations in the phase of a waveform, corresponding to time-domain deviations from perfect periodicity . Generally speaking, radio-frequency engineers speak of the phase noise of an oscillator, whereas digital-system engineers work with the jitter of a clock.
The group delay and phase delay properties of a linear time-invariant (LTI) system are functions of frequency, giving the time from when a frequency component of a time varying physical quantity—for example a voltage signal—appears at the LTI system input, to the time when a copy of that same frequency component—perhaps of a different physical phenomenon—appears at the LTI system output.
Reference clock jitter translates directly to the output, but this jitter is a smaller percentage of the output period (by the ratio above). Since the maximum output frequency is limited to f c l k / 2 {\displaystyle f_{clk}/2} , the output phase noise at close-in offsets is always at least 6 dB below the reference clock phase noise.
Conversely, a phase reversal or phase inversion implies a 180-degree phase shift. [ 2 ] When the phase difference φ ( t ) {\displaystyle \varphi (t)} is a quarter of turn (a right angle, +90° = π/2 or −90° = 270° = −π/2 = 3π/2 ), sinusoidal signals are sometimes said to be in quadrature , e.g., in-phase and quadrature components of a ...
Range ambiguity occurs when the time taken for an echo to return from a target is greater than the pulse repetition period (T); if the interval between transmitted pulses is 1000 microseconds, and the return-time of a pulse from a distant target is 1200 microseconds, the apparent distance of the target is only 200 microseconds.
The period of a ring oscillator varies in a random manner as T+T' where T' is a random value. In high-quality circuits, the range of T' is relatively small compared to the average period T. This variation in oscillator period is called jitter. [3]
The phase of each transmit pulse is different from the previous and future transmit pulses. This phenomenon is called phase jitter. In order for MTI to work, the initial phase of both transmit pulses must be sampled and the 180 degree phase rotation must be adjusted to achieve signal cancellation on stationary objects.