Search results
Results from the WOW.Com Content Network
Deterministic jitter has a known non-normal distribution. Deterministic jitter can either be correlated to the data stream (data-dependent jitter) or uncorrelated to the data stream (bounded uncorrelated jitter). Examples of data-dependent jitter are duty-cycle dependent jitter (also known as duty-cycle distortion) and intersymbol interference.
Deterministic Networking (DetNet) is an effort by the IETF DetNet Working Group to study implementation of deterministic data paths for real-time applications with extremely low data loss rates, packet delay variation (jitter), and bounded latency, such as audio and video streaming, industrial automation, and vehicle control.
The different AVB/TSN standards documents specified by IEEE 802.1 can be grouped into three basic key component categories that are required for a complete real-time communication solution based on switched Ethernet networks with deterministic quality of service (QoS) for point-to-point connections. Each and every standard specification can be ...
Data-dependent jitter (DDJ) is a specific class of timing jitter. In particular, it is a form of deterministic jitter which is correlated with the sequence of bits in the data stream. It is also a form of ISI .
Hard real-time is possible at application level due to strict determinism, jitter control and alignment/synchronization between tasks and scheduled network messaging. In L-TTA (Loosely TTA) architectures with synchronous TTEthernet network, but with local computer clocks decoupled from system/network time the performance of control loops may be ...
The FS5000 Jitterlyzer performs physical layer serial bus jitter evaluation. It can inject controlled jitter and measure the characteristics of incoming jitter. When teamed with a logic analyzer or protocol analyzer, it can correlate these measurements with protocol analysis. Physical-layer tests can be performed while the system under test is ...
White Rabbit is the name of a collaborative project including CERN, GSI Helmholtz Centre for Heavy Ion Research and other partners from universities and industry to develop a fully deterministic Ethernet-based network for general purpose data transfer and sub-nanosecond accuracy time transfer.
Some industrial networks emphasized deterministic delivery of transmitted data, whereas Ethernet used collision detection which made transport time for individual data packets difficult to estimate with increasing network traffic. Typically, industrial uses of Ethernet employ full-duplex standards and other methods so that collisions do not ...