Search results
Results from the WOW.Com Content Network
Any abnormality of conduction takes longer and causes "widened" QRS complexes. In bundle branch block, there can be an abnormal second upward deflection within the QRS complex. In this case, such a second upward deflection is referred to as R′ (pronounced "R prime"). This would be described as an RSR′ pattern.
An incomplete right bundle branch block (IRBBB) is a conduction abnormality in the right bundle branch block. While a complete RBBB has a QRS duration of 120 ms or more, an incomplete RBBB has a wave duration between 100 and 120 ms.
ECG would be abnormal in 75 to 95% of the patients. Characteristic ECG changes would be large QRS complex associated with giant T wave inversion [4] in lateral leads I, aVL, V5, and V6, together with ST segment depression in left ventricular thickening. For right ventricular thickening, T waves are inverted from V2 to V3 leads.
There are several methods to determining the ECG axis. The easiest method is the quadrant method, where one looks at lead I and lead aVF. First, examine the QRS complex in both leads I and avF and determine if the QRS complex is positive (height of R wave > S wave), equiphasic (R wave = S wave), or negative (R wave < S wave).
A right bundle branch block typically causes prolongation of the last part of the QRS complex and may shift the heart's electrical axis slightly to the right. The ECG will show a terminal R wave in lead V1 and a slurred S wave in lead I. Left bundle branch block widens the entire QRS, and in most cases shifts the heart's electrical axis to the ...
In lead V 1, the QRS complex is often entirely negative (QS morphology), although a small initial R wave may be seen (rS morphology). In the lateral leads (I, aVL, V 5-V 6) the QRS complexes are usually predominantly positive with a slow upstroke last >60ms to the R-wave peak. [4] Notching may be seen in these leads but this is not universal.
This refers to the appearance of leads I and II. If the QRS complex is negative in lead I and positive in lead II, the QRS complexes appear to be "reaching" to touch each other. This signifies right axis deviation. Conversely, if the QRS complex is positive in lead I and negative in lead II the leads have the appearance of "leaving" each other.
IVCD can be caused by abnormalities in the structures of bundle of His, Purkinje fibers or ventricular myocardium. [5] [6] Nonspecific intraventricular conduction delay (NICD) is a delay with widened QRS complex but without a specific intraventricular block present. [7]