enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Taylor's theorem - Wikipedia

    en.wikipedia.org/wiki/Taylor's_theorem

    In calculus, Taylor's theorem gives an approximation of a -times differentiable function around a given point by a polynomial of degree , called the -th-order Taylor polynomial. For a smooth function , the Taylor polynomial is the truncation at the order k {\textstyle k} of the Taylor series of the function.

  3. Taylor series - Wikipedia

    en.wikipedia.org/wiki/Taylor_series

    The Taylor polynomials for ln(1 + x) only provide accurate approximations in the range −1 < x ≤ 1. For x > 1, Taylor polynomials of higher degree provide worse approximations. The Taylor approximations for ln(1 + x) (black). For x > 1, the approximations diverge. Pictured is an accurate approximation of sin x around the point x = 0. The ...

  4. Taylor expansions for the moments of functions of random ...

    en.wikipedia.org/wiki/Taylor_expansions_for_the...

    In probability theory, it is possible to approximate the moments of a function f of a random variable X using Taylor expansions, provided that f is sufficiently differentiable and that the moments of X are finite. A simulation-based alternative to this approximation is the application of Monte Carlo simulations.

  5. Order of approximation - Wikipedia

    en.wikipedia.org/wiki/Order_of_approximation

    In the case of a smooth function, the nth-order approximation is a polynomial of degree n, which is obtained by truncating the Taylor series to this degree. The formal usage of order of approximation corresponds to the omission of some terms of the series used in the expansion .

  6. Differential calculus - Wikipedia

    en.wikipedia.org/wiki/Differential_calculus

    Taylor's theorem gives a precise bound on how good the approximation is. If f is a polynomial of degree less than or equal to d, then the Taylor polynomial of degree d equals f. The limit of the Taylor polynomials is an infinite series called the Taylor series. The Taylor series is frequently a very good approximation to the original function.

  7. Universal Taylor series - Wikipedia

    en.wikipedia.org/wiki/Universal_Taylor_series

    Thus to -approximate () = using a polynomial with lowest degree 3, we do so for () with < / by truncating its Taylor expansion. Now iterate this construction by plugging in the lowest-degree-3 approximation into the Taylor expansion of g ( x ) {\displaystyle g(x)} , obtaining an approximation of lowest degree 9, 27, 81...

  8. Finite difference method - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_method

    Where n! denotes the factorial of n, and R n (x) is a remainder term, denoting the difference between the Taylor polynomial of degree n and the original function. Following is the process to derive an approximation for the first derivative of the function f by first truncating the Taylor polynomial plus remainder: f ( x 0 + h ) = f ( x 0 ) + f ...

  9. Madhava series - Wikipedia

    en.wikipedia.org/wiki/Madhava_series

    This gives an approximation of śara by its Taylor polynomial of the 12'th order. This also involves one division, six multiplications and five subtractions only. Madhava prescribes this numerically efficient computational scheme in the following words (translation of verse 2.438 in Yukti-dipika):