Search results
Results from the WOW.Com Content Network
Flow state theory suggests that when individuals are in a state of flow, they experience deep immersion, focus, and intrinsic motivation in their activities. [52] In the context of education, flow has been associated with increased student engagement, which is a key determinant of learning success.
A state diagram for a door that can only be opened and closed. A state diagram is used in computer science and related fields to describe the behavior of systems. State diagrams require that the system is composed of a finite number of states. Sometimes, this is indeed the case, while at other times this is a reasonable abstraction.
A flow that is not a function of time is called steady flow. Steady-state flow refers to the condition where the fluid properties at a point in the system do not change over time. Time dependent flow is known as unsteady (also called transient [8]). Whether a particular flow is steady or unsteady, can depend on the chosen frame of reference.
Rheology (/ r iː ˈ ɒ l ə dʒ i /; from Greek ῥέω (rhéō) 'flow' and -λoγία (-logia) 'study of') is the study of the flow of matter, primarily in a fluid (liquid or gas) state but also as "soft solids" or solids under conditions in which they respond with plastic flow rather than deforming elastically in response to an applied force.
Finding your flow state in training can help you conquer hard workouts and improve your performance—while making it all feel effortless. Here’s how to do it.
If the fluid flow is brought to rest at some point, this point is called a stagnation point, and at this point the static pressure is equal to the stagnation pressure. If the fluid flow is irrotational, the total pressure is uniform and Bernoulli's principle can be summarized as "total pressure is constant everywhere in the fluid flow". [1]:
A quantum Hall state gives rise to quantized Hall voltage measured in the direction perpendicular to the current flow. A quantum spin Hall state is a theoretical phase that may pave the way for the development of electronic devices that dissipate less energy and generate less heat. This is a derivation of the Quantum Hall state of matter.
For example, while the flow of fluid through a tube or electricity through a network could be in a steady state because there is a constant flow of fluid or electricity, a tank or capacitor being drained or filled with fluid is a system in transient state, because its volume of fluid changes with time.