enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Binomial options pricing model - Wikipedia

    en.wikipedia.org/wiki/Binomial_options_pricing_model

    In finance, the binomial options pricing model (BOPM) provides a generalizable numerical method for the valuation of options. Essentially, the model uses a "discrete-time" ( lattice based ) model of the varying price over time of the underlying financial instrument, addressing cases where the closed-form Black–Scholes formula is wanting.

  3. Lattice model (finance) - Wikipedia

    en.wikipedia.org/wiki/Lattice_model_(finance)

    The simplest lattice model is the binomial options pricing model; [7] the standard ("canonical" [8]) method is that proposed by Cox, Ross and Rubinstein (CRR) in 1979; see diagram for formulae. Over 20 other methods have been developed, [ 9 ] with each "derived under a variety of assumptions" as regards the development of the underlying's price ...

  4. Valuation of options - Wikipedia

    en.wikipedia.org/wiki/Valuation_of_options

    See Asset pricing for a listing of the various models here. As regards (2), the implementation, the most common approaches are: Closed form, analytic models: the most basic of these are the Black–Scholes formula and the Black model. Lattice models (Trees): Binomial options pricing model; Trinomial tree; Monte Carlo methods for option pricing

  5. Finite difference methods for option pricing - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_methods...

    Finite difference methods were first applied to option pricing by Eduardo Schwartz in 1977. [2] [3]: 180 In general, finite difference methods are used to price options by approximating the (continuous-time) differential equation that describes how an option price evolves over time by a set of (discrete-time) difference equations.

  6. Category:Options (finance) - Wikipedia

    en.wikipedia.org/wiki/Category:Options_(finance)

    Download QR code; Print/export Download as PDF; ... Binary option; Binomial options pricing model; Bjerksund and Stensland; Black model; Black–Derman–Toy model;

  7. Monte Carlo methods for option pricing - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_methods_for...

    The first application to option pricing was by Phelim Boyle in 1977 (for European options). In 1996, M. Broadie and P. Glasserman showed how to price Asian options by Monte Carlo. An important development was the introduction in 1996 by Carriere of Monte Carlo methods for options with early exercise features.

  8. Black–Derman–Toy model - Wikipedia

    en.wikipedia.org/wiki/Black–Derman–Toy_model

    It is a one-factor model; that is, a single stochastic factor—the short rate—determines the future evolution of all interest rates. It was the first model to combine the mean-reverting behaviour of the short rate with the log-normal distribution, [1] and is still widely used. [2] [3]

  9. Monte Carlo methods in finance - Wikipedia

    en.wikipedia.org/wiki/Monte_Carlo_methods_in_finance

    For more than three or four state variables, formulae such as Black–Scholes (i.e. analytic solutions) do not exist, while other numerical methods such as the Binomial options pricing model and finite difference methods face several difficulties and are not practical. In these cases, Monte Carlo methods converge to the solution more quickly ...