Search results
Results from the WOW.Com Content Network
In numerical analysis, the Bulirsch–Stoer algorithm is a method for the numerical solution of ordinary differential equations which combines three powerful ideas: Richardson extrapolation, the use of rational function extrapolation in Richardson-type applications, and the modified midpoint method, [1] to obtain numerical solutions to ordinary ...
Example 2: We can demonstrate the same methods on a more complex game and solve for the rational strategies. In this scenario, the blue coloring represents the dominating numbers in the particular strategy. Step-by-step solving: For Player 2, X is dominated by the mixed strategy 1 / 2 Y and 1 / 2 Z.
An illustration of Newton's method. In numerical analysis, the Newton–Raphson method, also known simply as Newton's method, named after Isaac Newton and Joseph Raphson, is a root-finding algorithm which produces successively better approximations to the roots (or zeroes) of a real-valued function.
Marxist computer programmer Paul Cockshott argues that economic calculation is possible within a socialist state as long as computational devices are used. In "Towards a New Socialism's "Information and Economics: A Critique of Hayek" and "Against Mises", he argues that central planning is simplified by the use of computers in calculating the component of price not accounted for by Marxian ...
This one-point second-order method is known to show a locally quadratic convergence if the root of the equation is simple. SRA strictly implies this one-point second-order interpolation by a simple rational function. We can notice that even third order method is a variation of Newton's method. We see the Newton's steps are multiplied by some ...
For example, a quadratic for the numerator and a cubic for the denominator is identified as a quadratic/cubic rational function. The rational function model is a generalization of the polynomial model: rational function models contain polynomial models as a subset (i.e., the case when the denominator is a constant).
Like the sine, the cosine and tangent are replaced with rational equivalents, called the "cross" and "twist", and Divine Proportions develops various analogues of trigonometric identities involving these quantities, [3] including versions of the Pythagorean theorem, law of sines and law of cosines.
The felicific calculus is an algorithm formulated by utilitarian philosopher Jeremy Bentham (1748–1832) for calculating the degree or amount of pleasure that a specific action is likely to induce.