Search results
Results from the WOW.Com Content Network
A rational number can be defined as the quotient of two integers (as long as the denominator is non-zero). A more detailed definition goes as follows: [10] A real number r is rational, if and only if it can be expressed as a quotient of two integers with a nonzero denominator. A real number that is not rational is irrational.
The division with remainder or Euclidean division of two natural numbers provides an integer quotient, which is the number of times the second number is completely contained in the first number, and a remainder, which is the part of the first number that remains, when in the course of computing the quotient, no further full chunk of the size of ...
In Spain, Italy, France, Portugal, Lithuania, Romania, Turkey, Greece, Belgium, Belarus, Ukraine, and Russia, the divisor is to the right of the dividend, and separated by a vertical bar. The division also occurs in the column, but the quotient (result) is written below the divider, and separated by the horizontal line.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
Its existence is based on the following theorem: Given two univariate polynomials a(x) and b(x) (where b(x) is a non-zero polynomial) defined over a field (in particular, the reals or complex numbers), there exist two polynomials q(x) (the quotient) and r(x) (the remainder) which satisfy: [7]
3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the second one is a proper subgroup of the first one. ≤ 1.
The computation of the quotient and the remainder from the dividend and the divisor is called division, or in case of ambiguity, Euclidean division. The theorem is frequently referred to as the division algorithm (although it is a theorem and not an algorithm), because its proof as given below lends itself to a simple division algorithm for ...
Polynomial long division is an algorithm that implements the Euclidean division of polynomials, which starting from two polynomials A (the dividend) and B (the divisor) produces, if B is not zero, a quotient Q and a remainder R such that A = BQ + R, and either R = 0 or the degree of R is lower than the degree of B.