Search results
Results from the WOW.Com Content Network
AlexNet architecture and a possible modification. On the top is half of the original AlexNet (which is split into two halves, one per GPU). On the bottom is the same architecture but with the last "projection" layer replaced by another one that projects to fewer outputs.
In artificial neural networks, a convolutional layer is a type of network layer that applies a convolution operation to the input. Convolutional layers are some of the primary building blocks of convolutional neural networks (CNNs), a class of neural network most commonly applied to images, video, audio, and other data that have the property of uniform translational symmetry.
A convolutional neural network (CNN) is a regularized type of feed-forward neural network that learns features by itself via filter (or kernel) optimization. This type of deep learning network has been applied to process and make predictions from many different types of data including text, images and audio. [1]
U-Net is a convolutional neural network that was developed for image segmentation. [1] The network is based on a fully convolutional neural network [2] whose architecture was modified and extended to work with fewer training images and to yield more precise segmentation.
The first stage scaled, deskewed, and skeletonized the input image. The second stage was a convolutional layer with 18 hand-designed kernels. The third stage was a fully connected network with one hidden layer. The LeNet-1 architecture has 3 hidden layers (H1-H3) and an output layer. [4]
The learned aspect of the design included elements such as which lower layer(s) each higher layer took as input, the transformations applied at that layer and to merge multiple outputs at each layer. In the studied example, the best convolutional layer (or "cell") was designed for the CIFAR-10 dataset and then applied to the ImageNet dataset by ...
The first convolutional layers perform feature extraction. For the 28x28 pixel MNIST image test an initial 256 9x9 pixel convolutional kernels (using stride 1 and rectified linear unit (ReLU) activation, defining 20x20 receptive fields ) convert the pixel input into 1D feature activations and induce nonlinearity.
A convolutional neural network (CNN, or ConvNet or shift invariant or space invariant) is a class of deep network, composed of one or more convolutional layers with fully connected layers (matching those in typical ANNs) on top. [17] [18] It uses tied weights and pooling layers. In particular, max-pooling. [19]