Search results
Results from the WOW.Com Content Network
The apparent speed of light will change in a gravity field and, in particular, go to zero at an event horizon as viewed by a distant observer. [4] In deriving the gravitational redshift due to a spherically symmetric massive body, a radial speed of light dr / dt can be defined in Schwarzschild coordinates , with t being the time recorded on a ...
The travel time was determined by comparing the arrival times at the MINOS near- and far detector, apart from each other by 734 km. The clocks of both stations were synchronized by GPS, and long optical fibers were used for signal transmission. [11] They measured an early neutrino arrival of approximately 126 ns.
The speed of light in a locale is always equal to c according to the observer who is there. That is, every infinitesimal region of spacetime may be assigned its own proper time, and the speed of light according to the proper time at that region is always c. This is the case whether or not a given region is occupied by an observer.
[35] Travel to regions of space where extreme gravitational time dilation is taking place, such as near (but not beyond the event horizon of) a black hole, could yield time-shifting results analogous to those of near-lightspeed space travel. Contrarily to velocity time dilation, in which both observers measure the other as aging slower (a ...
The time it takes light to traverse back-and-forth along the Lorentz–contracted length of the longitudinal arm is given by: = + = / + / + = / = where T 1 is the travel time in direction of motion, T 2 in the opposite direction, v is the velocity component with respect to the luminiferous aether, c is the speed of light, and L L the length of the longitudinal interferometer arm.
A method of measuring the speed of light is to measure the time needed for light to travel to a mirror at a known distance and back. This is the working principle behind experiments by Hippolyte Fizeau and Léon Foucault. The setup as used by Fizeau consists of a beam of light directed at a mirror 8 kilometres (5 mi) away. On the way from the ...
An observer at rest observing an object travelling very close to the speed of light would observe the length of the object in the direction of motion as very near zero. Then, at a speed of 13 400 000 m/s (30 million mph, 0.0447 c) contracted length is 99.9% of the length at rest; at a speed of 42 300 000 m/s (95 million mph, 0.141 c), the ...
They measured muons in the atmosphere traveling above 0.99 c (c being the speed of light). Rossi and Hall confirmed the formulas for relativistic momentum and time dilation in a qualitative manner. Knowing the momentum and lifetime of moving muons enabled them to compute their mean proper lifetime too – they obtained ≈ 2.4 μs (modern ...