Search results
Results from the WOW.Com Content Network
LVF – Liquid volume fraction is the ratio of the liquid volumetric flow rate to the total volumetric flow rate. Hold up is the cross sectional area occupied by the liquid in the pipe carrying the wet gas flow. Void fraction is the ratio of the flow area occupied by the gas to the total flow area. Lockhart–Martinelli parameter. [5]
An important parameter in wet scrubbing systems is the rate of liquid flow. It is common in wet scrubber terminology to express the liquid flow as a function of the gas flow rate that is being treated. This is commonly called the liquid-to-gas ratio (L/G ratio) and uses the units of gallons per 1,000 actual cubic feet or litres per cubic metre ...
The area required to calculate the volumetric flow rate is real or imaginary, flat or curved, either as a cross-sectional area or a surface. The vector area is a combination of the magnitude of the area through which the volume passes through, A , and a unit vector normal to the area, n ^ {\displaystyle {\hat {\mathbf {n} }}} .
There are a number of correlations for slip ratio. For homogeneous flow, S = 1 (i.e. there is no slip). The Chisholm correlation [2] [3] is: = The Chisholm correlation is based on application of the simple annular flow model and equates the frictional pressure drops in the liquid and the gas phase.
For air with a heat capacity ratio =, then =; other gases have in the range 1.09 (e.g. butane) to 1.67 (monatomic gases), so the critical pressure ratio varies in the range < / <, which means that, depending on the gas, choked flow usually occurs when the downstream static pressure drops to below 0.487 to 0.587 times the absolute pressure in ...
SG is the specific gravity of the fluid (for water = 1), ΔP is the pressure drop across the valve (expressed in psi). In more practical terms, the flow coefficient C v is the volume (in US gallons) of water at 60 °F (16 °C) that will flow per minute through a valve with a pressure drop of 1 psi (6.9 kPa) across the valve.
The ideal gas equation can be rearranged to give an expression for the molar volume of an ideal gas: = = Hence, for a given temperature and pressure, the molar volume is the same for all ideal gases and is based on the gas constant: R = 8.314 462 618 153 24 m 3 ⋅Pa⋅K −1 ⋅mol −1, or about 8.205 736 608 095 96 × 10 −5 m 3 ⋅atm⋅K ...
Thus the flow rate of the straight pipe is greater than that of the vertical one. Furthermore, because the lower energy fluid in the boundary layer branches through the channels the higher energy fluid in the pipe centre remains in the pipe as shown in Fig. 4. Fig. 4. Velocity profile along a manifold