Ad
related to: regular vs irregular quadrilaterals
Search results
Results from the WOW.Com Content Network
A Watt quadrilateral is a quadrilateral with a pair of opposite sides of equal length. [6] A quadric quadrilateral is a convex quadrilateral whose four vertices all lie on the perimeter of a square. [7] A diametric quadrilateral is a cyclic quadrilateral having one of its sides as a diameter of the circumcircle. [8]
1-uniform tilings include 3 regular tilings, and 8 semiregular ones, with 2 or more types of regular polygon faces. There are 20 2-uniform tilings, 61 3-uniform tilings, 151 4-uniform tilings, 332 5-uniform tilings and 673 6-uniform tilings. Each can be grouped by the number m of distinct vertex figures, which are also called m-Archimedean tilings.
The Laves tilings have vertices at the centers of the regular polygons, and edges connecting centers of regular polygons that share an edge. The tiles of the Laves tilings are called planigons. This includes the 3 regular tiles (triangle, square and hexagon) and 8 irregular ones. [4] Each vertex has edges evenly spaced around it.
A square has a larger area than any other quadrilateral with the same perimeter. [7] A square tiling is one of three regular tilings of the plane (the others are the equilateral triangle and the regular hexagon). The square is in two families of polytopes in two dimensions: hypercube and the cross-polytope. The Schläfli symbol for the square ...
Given a convex quadrilateral, the following properties are equivalent, and each implies that the quadrilateral is a trapezoid: It has two adjacent angles that are supplementary, that is, they add up to 180 degrees. The angle between a side and a diagonal is equal to the angle between the opposite side and the same diagonal.
A non-convex regular polygon is a regular star polygon. The most common example is the pentagram , which has the same vertices as a pentagon , but connects alternating vertices. For an n -sided star polygon, the Schläfli symbol is modified to indicate the density or "starriness" m of the polygon, as { n / m }.
Seeing a regular star polygon as a nonconvex isotoxal simple polygon with twice as many (shorter) sides but alternating the same outer and "inner" internal angles allows regular star polygons to be used in a tiling, and seeing isotoxal simple polygons as "regular" allows regular star polygons to (but not all of them can) be used in a "uniform ...
Tessellations of euclidean and hyperbolic space may also be considered regular polytopes. Note that an 'n'-dimensional polytope actually tessellates a space of one dimension less. For example, the (three-dimensional) platonic solids tessellate the 'two'-dimensional 'surface' of the sphere.
Ad
related to: regular vs irregular quadrilaterals