Search results
Results from the WOW.Com Content Network
In control theory, overshoot refers to an output exceeding its final, steady-state value. [2] For a step input, the percentage overshoot (PO) is the maximum value minus the step value divided by the step value. In the case of the unit step, the overshoot is just the maximum value of the step
In control theory, overshoot refers to an output exceeding its final, steady-state value. [13] For a step input, the percentage overshoot (PO) is the maximum value minus the step value divided by the step value. In the case of the unit step, the overshoot is just the maximum value of the step response minus one.
Tay, Mareels and Moore (1998) defined settling time as "the time required for the response curve to reach and stay within a range of certain percentage (usually 5% or 2%) of the final value." [ 2 ] Mathematical detail
For applications in control theory, according to Levine (1996, p. 158), rise time is defined as "the time required for the response to rise from x% to y% of its final value", with 0% to 100% rise time common for underdamped second order systems, 5% to 95% for critically damped and 10% to 90% for overdamped ones. [6]
The PID algorithm in the controller restores the actual speed to the desired speed in an optimum way, with minimal delay or overshoot, by controlling the power output of the vehicle's engine. Control systems that include some sensing of the results they are trying to achieve are making use of feedback and can adapt to varying circumstances to ...
In number theory, the local zeta function Z(V, s) (sometimes called the congruent zeta function or the Hasse–Weil zeta function) is defined as (,) = (= ())where V is a non-singular n-dimensional projective algebraic variety over the field F q with q elements and N k is the number of points of V defined over the finite field extension F q k of F q.
Siegel derived it from the Riemann–Siegel integral formula, an expression for the zeta function involving contour integrals. It is often used to compute values of the Riemann–Siegel formula, sometimes in combination with the Odlyzko–Schönhage algorithm which speeds it up considerably.
Gourdon, X., Numerical evaluation of the Riemann Zeta-function Gourdon (2004), The 10 13 first zeros of the Riemann Zeta function, and zeros computation at very large height Odlyzko, A. (1992), The 10 20 -th zero of the Riemann zeta function and 175 million of its neighbors This unpublished book describes the implementation of the algorithm and ...