Search results
Results from the WOW.Com Content Network
Automatic clustering algorithms are algorithms that can perform clustering without prior knowledge of data sets. In contrast with other cluster analysis techniques, automatic clustering algorithms can determine the optimal number of clusters even in the presence of noise and outlier points. [1] [needs context]
Jumps in the resulting values then signify reasonable choices for k, with the largest jump representing the best choice. The distortion of a clustering of some input data is formally defined as follows: Let the data set be modeled as a p-dimensional random variable, X, consisting of a mixture distribution of G components with common covariance, Γ.
Similar to other clustering evaluation metrics such as Silhouette score, the CH index can be used to find the optimal number of clusters k in algorithms like k-means, where the value of k is not known a priori. This can be done by following these steps: Perform clustering for different values of k. Compute the CH index for each clustering result.
The Dunn index (DI) (introduced by J. C. Dunn in 1974) is a metric for evaluating clustering algorithms. [1] [2] This is part of a group of validity indices including the Davies–Bouldin index or Silhouette index, in that it is an internal evaluation scheme, where the result is based on the clustered data itself.
An outlier in clustering is a data point that does not belong to any of the clusters. One way of modeling outliers in model-based clustering is to include an additional mixture component that is very dispersed, with for example a uniform distribution.
In data mining, k-means++ [1] [2] is an algorithm for choosing the initial values (or "seeds") for the k-means clustering algorithm. It was proposed in 2007 by David Arthur and Sergei Vassilvitskii, as an approximation algorithm for the NP-hard k-means problem—a way of avoiding the sometimes poor clusterings found by the standard k-means algorithm.
Instead it is possible to maintain an array of distances between all pairs of clusters. Whenever two clusters are merged, the formula can be used to compute the distance between the merged cluster and all other clusters. Maintaining this array over the course of the clustering algorithm takes time and space O(n 2). The nearest-neighbor chain ...
NMF with the least-squares objective is equivalent to a relaxed form of K-means clustering: the matrix factor W contains cluster centroids and H contains cluster membership indicators. [15] [46] This provides a theoretical foundation for using NMF for data clustering. However, k-means does not enforce non-negativity on its centroids, so the ...