enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Repeating decimal - Wikipedia

    en.wikipedia.org/wiki/Repeating_decimal

    A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.

  3. Decimal representation - Wikipedia

    en.wikipedia.org/wiki/Decimal_representation

    Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".

  4. Rational number - Wikipedia

    en.wikipedia.org/wiki/Rational_number

    In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective rational sometimes means that the coefficients are rational numbers. For example, a rational point is a point with rational coordinates (i.e., a point whose coordinates are rational numbers); a rational matrix is a matrix of rational numbers; a rational polynomial may be a polynomial with rational ...

  5. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    In the case of irrational numbers, the decimal expansion does not terminate, nor end with a repeating sequence. For example, the decimal representation of π starts with 3.14159, but no finite number of digits can represent π exactly, nor does it repeat. Conversely, a decimal expansion that terminates or repeats must be a rational number.

  6. 0.999... - Wikipedia

    en.wikipedia.org/wiki/0.999...

    The Archimedean property: any point x before the finish line lies between two of the points P n (inclusive).. It is possible to prove the equation 0.999... = 1 using just the mathematical tools of comparison and addition of (finite) decimal numbers, without any reference to more advanced topics such as series and limits.

  7. Decimal - Wikipedia

    en.wikipedia.org/wiki/Decimal

    A repeating decimal is an infinite decimal that, after some place, repeats indefinitely the same sequence of digits (e.g., 5.123144144144144... = 5.123 144). [4] An infinite decimal represents a rational number, the quotient of two integers, if and only if it is a repeating decimal or has a finite number of non-zero digits.

  8. Arithmetic - Wikipedia

    en.wikipedia.org/wiki/Arithmetic

    Decimal fractions like 0.3 and 25.12 are a special type of rational numbers since their denominator is a power of 10. For instance, 0.3 is equal to , and 25.12 is equal to . [20] Every rational number corresponds to a finite or a repeating decimal. [21] [c]

  9. Positional notation - Wikipedia

    en.wikipedia.org/wiki/Positional_notation

    For base 10 it is called a repeating decimal or recurring decimal. An irrational number has an infinite non-repeating representation in all integer bases. Whether a rational number has a finite representation or requires an infinite repeating representation depends on the base. For example, one third can be represented by: