Search results
Results from the WOW.Com Content Network
One tesla is equal to one weber per square metre. The unit was announced during the General Conference on Weights and Measures in 1960 and is named [1] in honour of Serbian-American electrical and mechanical engineer Nikola Tesla, upon the proposal of the Slovenian electrical engineer France Avčin.
One tesla is equal to 10 4 gauss. Magnetic field drops off as the inverse cube of the distance ( 1 / distance 3 ) from a dipole source. Energy required to produce laboratory magnetic fields increases with the square of magnetic field.
The gauss is the unit of magnetic flux density B in the system of Gaussian units and is equal to Mx/cm 2 or g/Bi/s 2, while the oersted is the unit of H-field. One tesla (T) corresponds to 10 4 gauss, and one ampere (A) per metre corresponds to 4π × 10 −3 oersted.
In physics, the weber (/ ˈ v eɪ b-, ˈ w ɛ b. ər / VAY-, WEH-bər; [1] [2] symbol: Wb) is the unit of magnetic flux in the International System of Units (SI). The unit is derived (through Faraday's law of induction) from the relationship 1 Wb = 1 V⋅s (volt-second). A magnetic flux density of 1 Wb/m 2 (one weber per square metre) is one tesla.
1 1 p electric dipole moment: coulomb metre: C⋅m A⋅s⋅m G; Y; B conductance; admittance; susceptance: siemens: S = Ω −1: kg −1 ⋅m −2 ⋅s 3 ⋅A 2: κ, γ, σ conductivity: siemens per metre: S/m kg −1 ⋅m −3 ⋅s 3 ⋅A 2: B magnetic flux density, magnetic induction: tesla: T = Wb/m 2 = N⋅A −1 ⋅m −1: kg⋅s −2 ⋅A ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
1 maxwell = 1 gauss × 2. That is, one maxwell is the total flux across a surface of one square centimetre perpendicular to a magnetic field of strength one gauss. The weber is the related SI unit of magnetic flux, which was defined in 1946. [9] 1 maxwell ≘ 10 −4 tesla × (10 −2 metre) 2 = 10 −8 weber
Astronomers mistook a car SpaceX blasted into space years ago as an asteroid. The brief mix-up highlights the sometimes difficult pursuit of tracking deep-space objects.