Search results
Results from the WOW.Com Content Network
As (+) = and (+) + =, the sum and the product of conjugate expressions do not involve the square root anymore. This property is used for removing a square root from a denominator, by multiplying the numerator and the denominator of a fraction by the conjugate of the denominator (see Rationalisation).
In mathematics, in particular field theory, the conjugate elements or algebraic conjugates of an algebraic element α, over a field extension L/K, are the roots of the minimal polynomial p K,α (x) of α over K. Conjugate elements are commonly called conjugates in contexts where this is not ambiguous.
This technique may be extended to any algebraic denominator, by multiplying the numerator and the denominator by all algebraic conjugates of the denominator, and expanding the new denominator into the norm of the old denominator. However, except in special cases, the resulting fractions may have huge numerators and denominators, and, therefore ...
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.
Division of dual numbers is defined when the real part of the denominator is non-zero. The division process is analogous to complex division in that the denominator is multiplied by its conjugate in order to cancel the non-real parts. Therefore, to evaluate an expression of the form + +
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, if a {\displaystyle a} and b {\displaystyle b} are real numbers, then the complex conjugate of a + b i {\displaystyle a+bi} is a − b i . {\displaystyle a-bi.}
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Two elements , are conjugate if there exists an element such that =, in which case is called a conjugate of and is called a conjugate of . In the case of the general linear group GL ( n ) {\displaystyle \operatorname {GL} (n)} of invertible matrices , the conjugacy relation is called matrix similarity .