enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Involute - Wikipedia

    en.wikipedia.org/wiki/Involute

    In mathematics, an involute (also known as an evolvent) is a particular type of curve that is dependent on another shape or curve. An involute of a curve is the locus of a point on a piece of taut string as the string is either unwrapped from or wrapped around the curve. [1] The evolute of an involute is the original curve.

  3. Involution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Involution_(mathematics)

    Any involution is a bijection.. The identity map is a trivial example of an involution. Examples of nontrivial involutions include negation (x ↦ −x), reciprocation (x ↦ 1/x), and complex conjugation (z ↦ z) in arithmetic; reflection, half-turn rotation, and circle inversion in geometry; complementation in set theory; and reciprocal ciphers such as the ROT13 transformation and the ...

  4. Evolute - Wikipedia

    en.wikipedia.org/wiki/Evolute

    If = (), [,] is the parametric representation of a regular curve in the plane with its curvature nowhere 0 and () its curvature radius and () the unit normal pointing to the curvature center, then = + () describes the evolute of the given curve.

  5. Instant centre of rotation - Wikipedia

    en.wikipedia.org/wiki/Instant_centre_of_rotation

    Sketch 1: Instantaneous center P of a moving plane. The instant center of rotation (also known as instantaneous velocity center, [1] instantaneous center, or pole of planar displacement) of a body undergoing planar movement is a point that has zero velocity at a particular instant of time.

  6. Euler spiral - Wikipedia

    en.wikipedia.org/wiki/Euler_spiral

    A double-end Euler spiral. The curve continues to converge to the points marked, as t tends to positive or negative infinity.. An Euler spiral is a curve whose curvature changes linearly with its curve length (the curvature of a circular curve is equal to the reciprocal of the radius).

  7. Radius of curvature - Wikipedia

    en.wikipedia.org/wiki/Radius_of_curvature

    Let γ be as above, and fix t.We want to find the radius ρ of a parametrized circle which matches γ in its zeroth, first, and second derivatives at t.Clearly the radius will not depend on the position γ(t), only on the velocity γ′(t) and acceleration γ″(t).

  8. Kristin Cavallari Exposes Scott Disick's Private DM and ... - AOL

    www.aol.com/kristin-cavallari-exposes-scott...

    Kristin Cavallari exposed Scott Disick's private DM on her podcast and accused him of being manipulative.

  9. Tractrix - Wikipedia

    en.wikipedia.org/wiki/Tractrix

    Tractrix with object initially at (4, 0). Suppose the object is placed at (a, 0) (or (4, 0) in the example shown at right), and the puller at the origin, so a is the length of the pulling thread (4 in the example at right).