Search results
Results from the WOW.Com Content Network
X-ray diffraction is a generic term for phenomena associated with changes in the direction of X-ray beams due to interactions with the electrons around atoms. It occurs due to elastic scattering , when there is no change in the energy of the waves.
An X-ray diffraction pattern of a crystallized enzyme. The pattern of spots (reflections) and the relative strength of each spot (intensities) can be used to determine the structure of the enzyme. The relative intensities of the reflections provides information to determine the arrangement of molecules within the crystal in atomic detail.
MM XRD: Free open-source: Java 3D applet or standalone program: Ovito: MM XRD EM MD: Free open-source: Python [13] [14] PyMOL: MM XRD SMI EM: Open-source [15] Python [16] [self-published source?] According to the author, almost 1/4 of all published images of 3D protein structures in the scientific literature were made via PyMOL. [citation ...
André Authier: Dynamical theory of X-ray diffraction. IUCr monographs on crystallography, no. 11. Oxford University Press (1st edition 2001/ 2nd edition 2003). ISBN 0-19-852892-2. R. W. James: The Optical Principles of the Diffraction of X-rays. Bell., 1948. M. von Laue: Röntgenstrahlinterferenzen. Akademische Verlagsanstalt, 1960 (German).
Materials Data creates JADE software used to collect, analyze, and simulate XRD data and solve issues in an array of materials science projects. In 2020, the ICDD and the Cambridge Crystallographic Data Centre, which curates and maintains the Cambridge Structural Database, announced a data partnership.
X-ray diffraction is a non destructive method of characterization of solid materials. When X-rays are directed at solids they scatter in predictable patterns based on the internal structure of the solid. A crystalline solid consists of regularly spaced atoms (electrons) that can be described by imaginary planes.
Bragg diffraction (also referred to as the Bragg formulation of X-ray diffraction) was first proposed by Lawrence Bragg and his father, William Henry Bragg, in 1913 [1] after their discovery that crystalline solids produced surprising patterns of reflected X-rays (in contrast to those produced with, for instance, a liquid).
The Scherrer equation, in X-ray diffraction and crystallography, is a formula that relates the size of sub-micrometre crystallites in a solid to the broadening of a peak in a diffraction pattern. It is often referred to, incorrectly, as a formula for particle size measurement or analysis.