Ads
related to: examples of decimal expansion of fractions and mixededucation.com has been visited by 100K+ users in the past month
- 20,000+ Worksheets
Browse by grade or topic to find
the perfect printable worksheet.
- Worksheet Generator
Use our worksheet generator to make
your own personalized puzzles.
- Lesson Plans
Engage your students with our
detailed lesson plans for K-8.
- Digital Games
Turn study time into an adventure
with fun challenges & characters.
- 20,000+ Worksheets
Search results
Results from the WOW.Com Content Network
In mathematics, Midy's theorem, named after French mathematician E. Midy, [1] is a statement about the decimal expansion of fractions a/p where p is a prime and a/p has a repeating decimal expansion with an even period (sequence A028416 in the OEIS). If the period of the decimal representation of a/p is 2n, so that
Also the converse is true: The decimal expansion of a rational number is either finite, or endlessly repeating. Finite decimal representations can also be seen as a special case of infinite repeating decimal representations. For example, 36 ⁄ 25 = 1.44 = 1.4400000...; the endlessly repeated sequence is the one-digit sequence "0".
The 142857 number sequence is also found in several decimals in which the denominator has a factor of 7. In the examples below, the numerators are all 1, however there are instances where it does not have to be, such as 2 / 7 (0. 285714). For example, consider the fractions and equivalent decimal values listed below: 1 / 7 = 0 ...
Common fractions can be positive or negative, and they can be proper or improper (see below). Compound fractions, complex fractions, mixed numerals, and decimals (see below) are not common fractions; though, unless irrational, they can be evaluated to a common fraction. A unit fraction is a common fraction with a numerator of 1 (e.g., 1 / 7
For example, the constant π may be defined as the ratio of the length of a circle's circumference to its diameter. The following list includes a decimal expansion and set containing each number, ordered by year of discovery. The column headings may be clicked to sort the table alphabetically, by decimal value, or by set.
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.
The proof is straightforward. From the fraction itself, one can construct the quadratic equation with integral coefficients that x must satisfy. Lagrange proved the converse of Euler's theorem: if x is a quadratic irrational, then the regular continued fraction expansion of x is periodic. [4]
The procedure can also be extended to include divisors which have a finite or terminating decimal expansion (i.e. decimal fractions). In this case the procedure involves multiplying the divisor and dividend by the appropriate power of ten so that the new divisor is an integer – taking advantage of the fact that a ÷ b = ( ca ) ÷ ( cb ...
Ads
related to: examples of decimal expansion of fractions and mixededucation.com has been visited by 100K+ users in the past month