Search results
Results from the WOW.Com Content Network
Equality is also the only relation on a set that is reflexive, symmetric and antisymmetric. In algebraic expressions, equal variables may be substituted for one another, a facility that is not available for equivalence related variables. The equivalence classes of an equivalence relation can substitute for one another, but not individuals ...
In some cases, one may consider as equal two mathematical objects that are only equivalent for the properties and structure being considered. The word congruence (and the associated symbol ≅ {\displaystyle \cong } ) is frequently used for this kind of equality, and is defined as the quotient set of the isomorphism classes between the objects.
The set of all equivalence classes in with respect to an equivalence relation is denoted as /, and is called modulo (or the quotient set of by ). [3] The surjective map x ↦ [ x ] {\displaystyle x\mapsto [x]} from X {\displaystyle X} onto X / R , {\displaystyle X/R,} which maps each element to its equivalence class, is called the canonical ...
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
The equivalence class of a set A under this relation, then, consists of all those sets which have the same cardinality as A. There are two ways to define the "cardinality of a set": The cardinality of a set A is defined as its equivalence class under equinumerosity. A representative set is designated for each
In some other systems of axiomatic set theory, for example in Von Neumann–Bernays–Gödel set theory and Morse–Kelley set theory, relations are extended to classes. A set A is said to have cardinality smaller than or equal to the cardinality of a set B, if there exists a one-to-one function (an injection) from A into B.
Define the two measures on the real line as = [,] () = [,] for all Borel sets. Then and are equivalent, since all sets outside of [,] have and measure zero, and a set inside [,] is a -null set or a -null set exactly when it is a null set with respect to Lebesgue measure.
In set theory, the axiom of extensionality states that two sets are equal if and only if they contain the same elements. In mathematics formalized in set theory, it is common to identify relations—and, most importantly, functions —with their extension as stated above, so that it is impossible for two relations or functions with the same ...