Search results
Results from the WOW.Com Content Network
Hemoglobin in normal red blood cells is protected by a reduction system to keep this from happening. Nitric oxide is capable of converting a small fraction of hemoglobin to methemoglobin in red blood cells. The latter reaction is a remnant activity of the more ancient nitric oxide dioxygenase function of globins.
Hemoglobin and myoglobin are examples of hemeproteins that respectively transport and store of oxygen in mammals and in some fish. [9] Hemoglobin is a quaternary protein that occurs in the red blood cell, whereas, myoglobin is a tertiary protein found in the muscle cells of mammals.
In hematology, erythrocyte deformability refers to the ability of erythrocytes (red blood cells, RBCs) to change shape under a given level of applied stress without hemolysing (rupturing). This is an important property because erythrocytes must change their shape extensively under the influence of mechanical forces in fluid flow or while ...
Metalloprotein is a generic term for a protein that contains a metal ion cofactor. [1] [2] A large proportion of all proteins are part of this category. For instance, at least 1000 human proteins (out of ~20,000) contain zinc-binding protein domains [3] although there may be up to 3000 human zinc metalloproteins. [4]
In two sequential reactions a 17-hydroxyethylfarnesyl moiety is added at the 2-position and an aldehyde is added at the 8-position. [17] The most common type is heme B; other important types include heme A and heme C. Isolated hemes are commonly designated by capital letters while hemes bound to proteins are designated by lower case letters.
A red blood cell in a hypotonic solution, causing water to move into the cell A red blood cell in a hypertonic solution, causing water to move out of the cell. Hemolysis or haemolysis (/ h iː ˈ m ɒ l ɪ s ɪ s /), [1] also known by several other names, is the rupturing of red blood cells (erythrocytes) and the release of their contents into surrounding fluid (e.g. blood plasma).
Hemolysins or haemolysins are lipids and proteins that cause lysis of red blood cells by disrupting the cell membrane.Although the lytic activity of some microbe-derived hemolysins on red blood cells may be of great importance for nutrient acquisition, many hemolysins produced by pathogens do not cause significant destruction of red blood cells during infection.
Although the heme proteins are the most important class of iron-containing proteins, the iron–sulfur proteins are also very important, being involved in electron transfer, which is possible since iron can exist stably in either the +2 or +3 oxidation states. These have one, two, four, or eight iron atoms that are each approximately ...